
Component technology
in an embedded system

David Polberger

Thesis for a diploma in computer science, 30 ECTS credits, Department of Computer Science,
Faculty of Science, Lund University

Examensarbete för 30 hp, Institutionen för datavetenskap, Naturvetenskapliga fakulteten,
Lunds universitet

Component technology in an embedded system

Abstract

Software components have been touted as the solution to the modularity problems faced in
the software industry, one that also gives rise to a sophisticated market of software parts.
With components, proponents claim, software is effortlessly built by combining components
readily available for procurement. This master’s thesis examines components from a technical
perspective and brings into focus the industry standards that enable interoperability between
components. Particular attention is given to freestanding interfaces, and an object model
supporting this concept is developed in the C programming language.

This thesis also includes a discussion of the component technology developed at ST-Ericsson
and Sony Ericsson for use in their embedded systems. An execution tracing facility for this
environment, enabled using a declarative attribute, is presented, along with a discussion of
services customized through declarative means in the enterprise.

Komponentteknik i ett inbyggt system

Sammanfattning

Mjukvarukomponenter har förts fram som lösningen på problemet med att sätta samman
mjukvara från fristående delar. Teknikens förespråkare hävdar att program enkelt kan byggas
genom att kombinera komponenter som köps in på en marknad. Detta examensarbete studerar
mjukvarukomponenter från ett tekniskt perspektiv och diskuterar de industristandarder som
gör det möjligt för komponenter att samverka. Särskild vikt läggs vid fristående gränssnitt,
och en objektmodell som stöder sådana utvecklas i programmeringsspråket C.

Detta arbete studerar även den komponentteknik som utvecklats vid ST-Ericsson och
Sony Ericsson för användning i deras inbyggda system. En tjänst som aktiveras genom ett
deklarativt attribut och som möjliggör spårning av körtidsaktivitet har utvecklats som en
del av detta examensarbete, och dess implementation presenteras. En allmän diskussion av
implementationen av tjänster som konfigureras genom deklarativa attribut, företrädesvis i
industriell klient-server-miljö, ingår också.

© 2009 David Polberger. Some rights reserved. Revision 232.
This work is licensed under the Creative Commons license BY-NC-ND 2.5 Sweden (see Preface).

Typeset using LATEX 2ε with the Memoir document class. Figures drawn in Inkscape.

Contents

Figures v

Listings vii

Preface ix

1 Confronting the software crisis 1
1.1 Putting the software component idea to work 2
1.2 Contemporary components . 3
1.3 Defining a software component . 5
1.4 Fleshing out the definitions . 6
1.5 Beyond object-orientation? . 8
1.6 Muddying the waters . 9
1.7 Enterprise services . 10

2 Realizing software components 13
2.1 First-generation component models . 13
2.2 Second-generation component models . 14

2.2.1 Realizing interfaces . 14
2.2.2 Calling in-process components . 15
2.2.3 Calling out-of-process components . 16
2.2.4 Late binding versus very late binding 18
2.2.5 Managing memory . 19

2.3 Third-generation component models . 19

3 Demystifying dynamic dispatch 23
3.1 A binary tree node in C . 24

3.1.1 Name mangling . 30
3.1.2 Error handling . 31
3.1.3 Instance data . 32

3.2 A syntax tree representing an arithmetic expression in C 32
3.2.1 Introducing late binding . 34

iii

Contents

4 Refining the object model 47
4.1 Instituting a root interface . 48
4.2 Enabling very late binding . 60
4.3 Object-oriented omissions . 70

4.3.1 Class interface . 70
4.3.2 Implementation inheritance . 70
4.3.3 Access specifiers . 71
4.3.4 Multiple interface inheritance . 71

4.4 Moving toward component technology . 72
4.4.1 Factories . 72
4.4.2 Code generation . 73
4.4.3 Runtime type information . 73
4.4.4 Software components . 74

5 Ways of the industry 75
5.1 Visual Basic . 76
5.2 COM . 76

5.2.1 Technical foundation . 77
5.3 Delphi . 80
5.4 CORBA . 83

5.4.1 Implications of not using a binary standard 84
5.5 Java . 85

5.5.1 Repartitioning the platform . 86
5.5.2 Modularity woes . 88
5.5.3 True Java components . 89

5.6 .NET . 91
5.6.1 Technical foundation . 91
5.6.2 Interoperating with native code . 93
5.6.3 True .NET components . 94

6 The (Sony) Ericsson way 95
6.1 The Ericsson Component Model . 96
6.2 Enter Sony Ericsson . 97

6.2.1 Inter-process communication . 98
6.2.2 Java binding . 101

7 Implementing interception 103
7.1 Interception practices . 104
7.2 Implementing execution tracing at Sony Ericsson 106

7.2.1 Generating UML sequence diagrams 109
7.2.2 Tracing invocations . 110
7.2.3 Future work . 112

Bibliography 115

iv

Figures

2.1 Client-side and server-side proxies . 16
2.2 Interface reference passed to a server . 18
3.1 Syntax tree corresponding to the expression ((-y - 6 * 3) / z) + 2 33
3.2 Diagram of an interface hierarchy for arithmetic nodes 34
3.3 Memory layout of interfaces of the custom object model 36
3.4 Instance data of DefaultBinaryOperatorNode objects 41
4.1 Revised diagram of an interface hierarchy for arithmetic nodes 49
4.2 Revised memory layout of interfaces of the custom object model 49
4.3 Proposed instance data of DefaultBinaryOperatorNode objects 57
4.4 Revised instance data of DefaultBinaryOperatorNode objects 58
5.1 Memory layout of COM interfaces . 78
6.1 Memory layout of ECM/ECMX interfaces . 97
7.1 UML sequence diagram generated from a sample trace file excerpt 108

v

Listings

3.1 BinaryTreeNode.java . 24
3.2 BinaryTreeNode.h . 26
3.3 BinaryTreeNode.c . 28
3.4 dispatch.pl . 35
3.5 Node.h . 36
3.6 BinaryOperatorNode.h . 38
3.7 DefaultBinaryOperatorNode.h . 40
3.8 DefaultBinaryOperatorNode.c . 42
4.1 Fundamental.h . 48
4.2 Excerpt from a revised version of DefaultBinaryOperatorNode.h 52
4.3 Excerpt 1 from a revised version of DefaultBinaryOperatorNode.c 52
4.4 Excerpt 2 from a revised version of DefaultBinaryOperatorNode.c 59
4.5 Scriptable.h . 60
4.6 ScriptableArgumentType.h . 63
4.7 Excerpt from NodeTest.c . 65
4.8 Excerpt 3 from a revised version of DefaultBinaryOperatorNode.c 66
7.1 Excerpt from a sample trace file . 107
7.2 Sample trace wrapper . 111
7.3 Sample configuration file enabling tracing . 111

vii

Preface

Software components are units of composition, from which component-based software is
built. Software components are little more than classes. Software components are
similar to components in other engineering disciplines, and may thus be sold on a market,
competing on price and functionality. Software components are “better libraries” that
declaratively state their version information and their dependencies, thus avoid-
ing “DLL hell.” Software components are written by skilled programmers and assembled by
personnel with a different set of skills. Software components are containers of classes,
from which objects are instantiated. Software components succeed where objects failed.
Software components encourage black box reuse, as opposed to white box reuse.
Software components are manipulated in visual designers and customized through their prop-
erties. Software components run within the confines of application servers in the
enterprise. Software components revolutionize the construction of software. Software
components play by well-defined rules that govern their memory usage, names,
runtime type information and object invocations. Software components encapsulate
business logic in the enterprise. Software components are usable in binary form, and
do not require access to their source code. Software components and component-
oriented programming herald a new era in software reuse. Software components request
services from their containers in a declarative manner. Software components may be
composed in the same way that LEGO bricks can be used to build new structures. Software
components may be substituted for one another due their use of interfaces and
dynamic dispatch. Software components require new business processes. Software com-
ponents’ role as reusable entities is due to strict adherence to standards. Software
components are rigorously documented entities that are certified by trusted, third-party
organizations. Software components are stateless entities that may be indepen-
dently deployed without modification. Software components can be used as a middle
ground alternative to writing software from scratch and using fully ready-made solutions.
Software components are independent, encapsulated software entities. Software
components can be anything, from database servers to source code snippets. Software com-
ponents enable the seamless, effortless use of services running on other computers.

ix

Preface

Introduction

Much has been written about software components over the years. The sampling on the
preceding page reflects some of the many disparate and often contradictory lines of thought
that I have encountered while working on this thesis. While there is considerable discrepancy
of opinion over some of the finer points of the definition of software components, there is
universal agreement that the goal of the discipline is to make it possible to create software,
partly or fully, from prefabricated parts. Software components, in other words, facilitate
software reuse.

This discipline goes by many names. Some refer to designing software with components as
“Component-Based Design” (CBD) and to the branch of software engineering as “Component-
Based Software Engineering” (CBSE). Others prefer “software componentry,” or “component
technology.” I have elected to use the latter name in this thesis.

From a technical perspective, component technology lays down standards that enable
software parts to be usable from many different environments. While software reuse in and of
itself cannot be credited to component technology, the discipline does bring increased rigor.
Its standards enable objects—and not just procedures—created in different environments to
communicate, while insisting that interfaces are kept separate from their implementations.
Some of the technology in this space bring additional features, which enable things like
distributed computing and out-of-band services through declarative attributes.

The other major perspective that is often applied to component technology is the business
perspective. Because component technology makes reuse possible on a grander scale than
before, there is a larger market for software components than for, say, language- and vendor-
specific class libraries. As a result, some envision the formation of large software component
markets, offering a wide range of compatible components competing on price and functionality,
ultimately leading to the transformation of the entire industry. This thesis pays very little
attention to the business perspective, and almost exclusively focuses on the enabling technology.

Background

In June 2005, I started an internship at Sony Ericsson Mobile Communications AB in Lund,
Sweden, with the intent of writing my master’s thesis in computer science at the company.
Sony Ericsson, a maker of cellular phones, arranged for me to work on their in-house-developed
component technology ECMX as part of the company’s software architecture group. The goal
of my work was to enable developers to debug software written using ECMX, with a particular
focus on invocations spanning multiple processes.

I was hired shortly after completing the practical part of my thesis work, and spent more
than two years as a full-time employee with the company. During my tenure, I had the
privilege of designing a new user-facing application from the ground up, which presented
large quantities of hierarchically organized information related to various disparate domains.
The application, which was designed to be agnostic to the nature of the content it displayed,
relied on a number of ECMX objects, written by other groups, which implemented interfaces
mandated by the application. Some objects were implemented in C, and others in Java,
unbeknownst to the application. This application made heavy use of ECMX and its support
for location-transparent invocations, giving me ample time to study its internals in the course
of my professional duties, a luxury afforded few students. I left the company in March 2008 to

x

start a software business, and, having gotten the company off the ground, wrote this report in
the first half of 2009.

ECMX piqued my interest in component technology, which led me to this work. While one
aim of this thesis is to present the work I did in Sony Ericsson’s architecture group, another goal
is to place ECMX in a historical and technical perspective, as well as to give an overview of this
field and the industrial technologies associated with it. In the course of this thesis, I hope to
strip component technology of its veneer of complexity, by demonstrating the straight-forward
technology that powers object invocations and by discussing the implementation of component
models.

Biases
I bring my biases to this work, although I have tried to be mindful of them. While I have
tried to give the technologies I cover fair treatment, there is no escaping the fact that I had
significant exposure to a few of them before I wrote this thesis, and fairly little experience with
the others. I would be surprised if this has not affected the end result. In particular, I have
spent many years with Embarcadero’s Delphi product, and have written many components
for it, including a rich text label that I released as open source in 2002.1,2 I also had some
experience with procuring and using third-party COM components as part of an application I
worked on in the late 1990s. As a Java developer, I also had some experience with OSGi prior
to writing this report.

Organization
This thesis is meant to be read sequentially—later chapters build on the material in chapters
preceding them.
Chapter 1: Confronting the software crisis discusses the software crisis debate of the
late 1960s, and the role of software components as a possible remedy. Components, as they are
thought of today, are discussed, and a definition is settled on. Object-oriented programming
in the component context is also covered, as is the role of components in enterprise computing.
Chapter 2: Realizing software components examines the technical means used to realize
components more concretely. In so doing, it categorizes software components into three distinct
categories, and introduces most of the concepts associated with component technology.
Chapter 3: Demystifying dynamic dispatch explores the technology behind dynamic
dispatch. This concept is of paramount importance to component technology, as it makes it
possible to program to a specification, and defer binding to an implementation until runtime.
A simple object model supporting dynamic dispatch is built in the C programming language
over the course of this chapter.

1Most of the components I have written for Delphi have been statically linked with the software using them,
and as a result they cannot be considered components per the definitions of Chapter 1. Had I opted to deploy
them as Delphi runtime packages instead (described on page 81), they would largely have been in compliance
with these definitions.

2The rich text label I wrote was contributed to the JEDI Visual Component Library as TJvLinkLabel. To
this day, Project JEDI actively maintains it, and it has spawned a fork in the DIHtmlLabel, which replaces the
parser with one that is Unicode-aware. (A “fork” is a separate branch of a software project, one that often
veers off in a different direction.)

xi

http://jvcl.delphi-jedi.org

Preface

Chapter 4: Refining the object model builds on the material in Chapter 3, and introduces
more sophisticated memory management, better support for interfaces, as well as provisions
for scripting languages. Constructs left out from the object model are discussed, as are the
additions one could make to this object model to create a full-fledged component model
consistent with the definitions of Chapter 1.

Chapter 5: Ways of the industry covers the major component-related technologies that
have appeared in industry, technologies that have shaped our notion of what a software
component is. Topics include Microsoft’s Visual Basic, COM and .NET, Embarcadero’s
Delphi, OMG’s CORBA, as well as OSGi for Java.

Chapter 6: The (Sony) Ericsson way introduces the component technology developed at
ST-Ericsson and Sony Ericsson for use in their embedded systems. The technology created at
Sony Ericsson for inter-process communication and interoperability between Java and native
code is discussed at some length.

Chapter 7: Implementing interception expands on the role of declarative attributes in
component technology, which are used to configure services. Implementations in industry
are discussed, followed by a presentation of an execution tracing facility I implemented at
Sony Ericsson, configured declaratively. Provisions for generating UML interaction sequence
diagrams from traces are examined, before a discussion of opportunities for future work.

License

This work is licensed under the Creative Commons license Attribution-Non-commercial-No
Derivative Works 2.5 Sweden.

You are free to share this work—you may copy, distribute and transmit it to others—under
the following conditions:

• Attribution. You must give the author credit.

• Non-commercial usage. You may not use this work for commercial purposes.

• No derivative works. You may not alter, transform or build upon this work.

If you distribute this work, you must make clear to others the license terms. Any of these
conditions can be waived if you get permission from the copyright holder. Nothing in this
license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the full license, which is available at the following address (in Swedish):

http://creativecommons.org/licenses/by-nc-nd/2.5/se/legalcode

xii

http://creativecommons.org/licenses/by-nc-nd/2.5/se/legalcode

Contact information
You are welcome to get in touch with me, at david@polberger.se. This thesis is available
on the Web, at http://www.polberger.se/components/. This site also contains the source
code for Chapter 3 and Chapter 4, as well as a blog, a presentation, a browsable Web version
of this thesis and potentially errata.

Acknowledgments
I would like express my gratitude to Marcus Offesson for reading a draft copy of this thesis,
and for giving me valuable feedback. I would also like to thank my advisors, Ferenc Belik and
Göran Fries of the Department of Computer Science and Henrik Sundström of Sony Ericsson,
for their patience. It has been a pleasure working with Ola Hedbäck, the librarian at the
Department of Computer Science. I would also like to acknowledge the members of the Visual
Basic, COM, Delphi, OSGi and .NET communities that have reviewed Chapter 5. Last but
not least, I would like to thank Marianne for her support during all these years I have spent
(not) working on this thesis.

David Polberger Lund, August 2009

xiii

mailto:david@polberger.se
http://www.polberger.se/components/

CHAPTER 1
Confronting the software crisis

The notion of a software crisis, or a software gap, emerged at the end of the 1960s. It was
believed that the accomplishments of software fell far short of its ambitions, in terms of user
expectations, performance and cost (David and Fraser, quoted in Naur and Randell 1969:120).
The crisis stemmed from the difficulties encountered when building large, complex systems.
Hardware was evolving at an unprecedented pace at the time, a pace software was not able to
match. Edsger W. Dĳkstra brought up the subject when giving a speech accepting the ACM
Turing Award in 1972:

[The primary cause of the software crisis is] that the machines have become several
orders of magnitude more powerful! To put it quite bluntly: as long as there
were no machines, programming was no problem at all; when we had a few weak
computers, programming became a mild problem, and now [that] we have gigantic
computers, programming has become an equally gigantic problem. In this sense
the electronics industry has not solved a single problem, it has only created them,
it has created the problem of using its products. To put it another way: as the
power of available machines grew by a factor of more than a thousand, society’s
ambition to apply these machines grew in proportion [...]. The increased power
of the hardware, together with the perhaps even more dramatic increase in its
reliability, made solutions feasible that the programmer had not dared to dream
about a few years before. And now, a few years later, he had to dream about them
and, even worse, he had to transform such dreams into reality! Is it a wonder that
we found ourselves in a software crisis?

A NATO-sponsored software engineering conference was held in Germany in 1968, and the
purported crisis figured prominently in the discussions. The very term “software engineering”
was provocatively coined for this conference—it was argued that software development was not
yet a mature branch of engineering, and that the field had to evolve to earn the engineering
label (Seidman 2008; Naur and Randell 1969:13).

Software reuse was not in wide use at the time. A section in the venerable magazine
Communications of the ACM was dedicated to disseminating algorithms in the 1960s, but only
in source code form (written in the programming language ALGOL 60), and the algorithms

1

1. Confronting the software crisis

were meant to be adapted manually to the target language and machine (Perlis 1966). At the
time, developers constantly reinvented the wheel when building systems.

In an effort to counter the crisis, Douglas McIlroy (1969:138) introduced the notion of
software components in an invited address at the NATO conference. Instead of developers
reinventing basic functionality with each new software project, reusable software components
would be used instead, in much the same way the hardware industry was using pre-fabricated
components:

We undoubtedly produce software by backward techniques. We undoubtedly get
the short end of the stick in confrontations with hardware people because they are
the industrialists and we are the crofters. Software production today appears in
the scale of industrialization somewhere below the more backward construction
industries. I think its proper place is considerably higher, and would like to
investigate the prospects for mass-production techniques in software.

McIlroy lamented that software developers started software projects thinking about what
to build rather than what to use. To provide these ready-made components, he advocated
that a software components industry be founded, providing best-of-breed software parts:

[The] purchaser of a component [...] will choose one tailored to his exact needs. He
will consult a catalogue offering routines in varying degrees of precision, robustness,
time-space performance, and generality. He will be confident that each routine in
the family is of high quality—reliable and efficient.

McIlroy’s understanding of software components was quite different from the contemporary
understanding. Components in McIlroy’s vein were akin to the procedural libraries of today,
and could be distributed in source code form only, contrary to the modern expectation that
components may be distributed in binary form.

Another leading light in this field is Brad Cox, who introduced the Software IC (inte-
grated circuit) concept in middle of the 1980s (Persson 2002:35). In contrast to McIlroy’s
understanding of components, a Software IC was to be available in binary form. Cox’s ideas
received much attention, but the Software IC concept was marred by the requirement that all
components be written in the Objective-C programming language, also designed by Cox.

1.1 Putting the software component idea to work

In his address, McIlroy listed a number of software categories that would be suitable for
components: mathematical functions, input-output conversion, geometry, text processing and
storage management (McIlroy 1969:144). As Persson (2002:31) points out, the C standard
library, which McIlroy was instrumental in creating during his time at Bell Laboratories, had
routines for all of the original categories but the geometry one.

McIlroy also invented the pipeline mechanism (Ritchie 1980). A pipeline can be seen as
a number of software components working in tandem, each serving a very specific purpose,
and each unaware of the inner workings of the other components in the pipeline. A user,
or a script, strings together such components, enabling complete programs to be built. The
pipeline in the Unix operating system was McIlroy’s first application of the concept.

2

1.2. Contemporary components

More formally, a pipeline is an ordered collection of software elements that consume data
from the element directly preceding them in the pipeline and produce data based on the
consumed data (the first element consumes no data). A pipeline can have an arbitrary number
of elements, with data flowing from the first element to the last. In Unix, each software
element is a stand-alone command-line program.

For example, consider the following program that calculates the number of files and
directories in the current directory. It consists of the following input to a Unix shell:1

ls | wc -l

The ls program lists all available files in the current directory. Instead of displaying this
list on-screen, the pipe symbol (“|”) causes it to be redirected to the wc program, in effect
gluing the two programs together. The wc program counts the number of lines in the input
data when given the -l argument. As wc is the last program in the pipeline, its output by
default appears on-screen. In effect, a program has been constructed from two components
that displays the number of files in a directory with very little effort.

Pipelines can be quite complex; consider the following program that identifies the largest
file in the current directory:

ls -s | sort -n | tail -1 | awk ’{print $2}’

The familiar ls program is given an -s argument, prompting it to produce a list of all files
in the current directory, with file sizes in the first column and file names in the second column.
The sort program is given an -n argument, instructing it to sort its input data numerically,
resulting in a list with the smallest file at the top and the largest file at the bottom. The tail
program extracts the last n lines (where n is one in this case, a number conveyed by the -1
argument). What remains is a string with the size of the largest file in the first column, and
its name in the second column. Finally, the awk program2 extracts the contents of the second
column and displays it on-screen. In effect, a program has been constructed that identifies the
name of the largest file in the current directory, again with the help of reusable components in
the guise of standard command-line programs.

The holy grail of component-oriented programming is to enable the same ease-of-use when
creating much larger programs consisting of a wide variety of components.

1.2 Contemporary components
The software components of today have the same overarching goal as the components advocated
in years past: making it possible to encapsulate discrete functionality into reusable entities.
The concept has evolved considerably since the late 1960s, and today, some or all of the
following should be true for a contemporary component:

• A component stands alone. As such, a component should not have been produced for
any one project, and should prove itself useful in a multitude of projects (Vigder 2001).

1While these pipeline examples are meant to illustrate a concept in use since the 1970s, they have been
tested on a system running a modern Linux distribution and may thus not work on a vintage Unix system.

2AWK is programming language designed to process strings. Its programs are interpreted by the awk
program.

3

1. Confronting the software crisis

From an economic point of view, Szyperski et al. (2002) estimate that a component needs
to be used in three distinct project before it breaks even. As a stand-alone entity, a
component may be deployed to an end-user’s system separately from the programs that
make use of it. A component should not be tied to a specific programming environment
or language.

• A component is encapsulated. The inner workings of a component are hidden,
meaning that a component may only be accessed in carefully controlled ways (Sommerville
2007). This enables information hiding on a high level, in the tradition of Parnas (1972).
A component is thus used without relying on its source code, which is known as black
box reuse (as opposed to white box reuse). The use of black box reuse is said to stimulate
the move from monolithic systems to modular ones (Szyperski et al. 2002:xxii).

• A component is customizable. Components should make it possible to customize
their behavior, enabling them to be used in a variety of contexts.

• A component is documented. Aside from including developer documentation, Szyper-
ski et al. (2002:470) suggest that the documentation should be machine-readable, making
it possible to store it as part of component catalogs, which can be searched through in
pursuit of suitable components. The documentation should include the component’s
requirements on the underlying platform and on other components—in other words, its
dependencies.

• A component is certified. Some commentators, such as Booch et al. (2001) and
Bachmann et al. (2000), have suggested that in order for components to be truly
trustworthy, they need to be certified to conform to rigorous standards set by neutral,
third-party organizations.

Software components are meant to enable reuse, making it possible for developers to glue
interoperable software parts together (this is often referred to as composition). As a result, it is
thought that software components create new roles in the software industry, that of component
writers and component assemblers (Vitharana 2003; Szyperski et al. 2002:495). The former
category is made up of skilled programmers, working with existing tools and languages, while
the latter category is comprised of people with a different set of skills. Component assemblers
need not use the same tools and languages used by component writers, and may instead use
scripting languages in conjunction with visual designers to put together complete solutions.3

Components that can be reused by many different software projects lend themselves well to
being sold on a market.4 In other engineering industries, a component market enables buyers
to choose from a wide variety of components that can be integrated into their products, making
possible complex products that would have been hard for a single company to realize alone.

3Building complex software using only visual means has been largely discredited. Anders Heljsberg, former
architect of the Borland Delphi development environment, discusses a purely visual development product from
Borland that was canceled before it shipped (Microsoft 2005): “At that time there was all of this talk about
Software ICs and plug-and-play[... You] have a visual designer and put down your components and then wire
them together and it all sounded great[...]. It turned out [that] you couldn’t build anything with this stuff
[...]. When it comes to visual programming, a line of code is worth a thousand pictures, because you die a slow
death in wires going from everywhere to everywhere.”

4Software components that are released under an open source license, and are thus typically available at no
cost, are increasingly used in industry (Vigder 2001).

4

1.3. Defining a software component

Some proponents of software components believe that the same kind of market is sustainable
for software parts. Ivar Jacobson, one of the founders of the Unified Modeling Language
(UML), writes the following in a foreword to a book on software components (Heineman and
Councill 2001a):

I dream that we will get a component marketplace where different players can
work. Some will play the role of selling components; others will buy components.
[...] In the coming years, we will be able to revolutionize the production of software
and then bring my final dream to fruition [...].

1.3 Defining a software component
Software components are notoriously hard to define (Olsen 2006). Many concepts have been
graced with the “component” designation over the years, and far from all are compatible with
the view taken in this thesis. By contrast, the object concept is comparatively well-defined—
objects encapsulate state and behavior.5 There is sufficient consensus on this definition that it
is enshrined in a general-purpose dictionary (Merriam-Webster 2009a):

[An object is] a data structure in object-oriented programming that can contain
functions as well as data, variables, and other data structures.

The same dictionary has only a generic definition of the word “component”—a component
is simply “a constituent part,” that is, something that is part of a greater whole (Merriam-
Webster 2009b). Mathiassen et al. (2001), in a book on object-oriented analysis and design,
offer a somewhat more stringent definition:

[A component is] a collection of program parts that constitutes a whole and has
well-defined responsibilities.

While this definition is compatible with the software components of this thesis, it is very
broad. Applied to software, the algorithms listed in the algorithms section of Communications
of the ACM in the 1960s would qualify. McIlroy (1969) emphatically rejected the notion that
these algorithms could qualify as components.

Two works provide more precise definitions that are used in this thesis. Szyperski et al.
(2002:41), whose book “Component Software: Beyond Object-Oriented Programming” is one
of the more influential in the field and one which is cited frequently in this thesis, offer this
definition:

A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties.

Heineman and Councill (2001a:7), whose book “Component-Based Software Engineering:
Putting the Pieces Together” is a collection of articles related to this field, offer this definition:

5Beyond this fundamental accord, there is considerable room for diversity. In most traditions, objects are
created from blueprints called classes, but in some, they are cloned from other objects serving as prototypes.
Also, object-oriented languages differ in their degree of support for classes to inherit the implementation of
other classes, and if so, whether they are substitutable for the classes they inherit from.

5

1. Confronting the software crisis

[A software component is] a software element that conforms to a component model
and can be independently deployed and composed without modification according
to a composition standard.

These two definitions capture the essence of how software components should be used.
They are light on technical details, though. For the purposes of this thesis, the following
pragmatic definition is adopted in addition to the above definitions:

A software component is a container of instantiable classes, as understood in the
field of object-oriented programming. A component has an identity at runtime, but
no observable state. Different versions of a component may co-exist at runtime.

In their books, both Szyperski et al. and Heineman and Councill make provisions for
components that are not object-oriented. Szyperski et al., in particular, stress that a component
may be implemented using a procedural or functional language. This thesis takes the position
that, at least from the outside, a component is a container of classes—a class superstructure.
Supporting this position, Aleksy et al. (2005:6) state that “component technology [...] is
conceptually still built upon the ideas and technologies of object-orientation.” This view does
not preclude a component implementation from being written in a procedural language, or
from using the services of a functional language, but from the outside, a software component
is object-oriented.

An alternative view of the component concept is that a component is a stateful entity that
is placed on a form in a visual designer, its behavior customized through visual means. A
push button in those environments, for instance, may thus be referred to as a “component.”
Others hold that a component is little more than a class, or a class “plus stuff” (Venners and
Eckel 2003). These views are not compatible with the view adopted by this thesis.

1.4 Fleshing out the definitions
“One thing can be stated with certainty: components are for composition.” (Szyperski et al.
2002:3). By composition, Szyperski et al. refer to the process of assembling a system using
a selection of compatible components. This is only possible if components have a shared
understanding of the outside world, what it offers, and their responsibilities toward it. Such
a set of standards is known as a component model, of which there are many incompatible
models.6 Implementations of component models—that is, the accompanying runtime software
and tools—are sometimes known as “component frameworks.” Without a component model
implementation, components cannot be used.

Components have responsibilities to their environment, but also to other components and
to the clients that make use of their services. A component must advertise its services somehow,
and must let its clients know what it expects of them. This information is communicated
using interfaces that may be realized by an arbitrary number of implementations that agree to
abide by their rules, and should be seen as binding contracts. Classes, which are contained in
components, are the implementation entities that realize interfaces by implementing them. An
interface is a freestanding, independent entity that is neither part of the classes implementing
it, nor part of the code that accesses functionality through it.

6There are often bridging solutions that help components written for one component model communicate
with those written for an otherwise incompatible model (Weinreich and Sametinger 2001).

6

1.4. Fleshing out the definitions

Incoming interfaces communicate what components are capable of, while outgoing interfaces
communicate what is expected of clients that make use of their services. As components are
encapsulated entities exposing no implementation details, interfaces are the sole means of
accessing them. They consist of an arbitrary number of operations that for incoming interfaces
correspond to actions that the component may undertake on behalf of a client. Operations in
outgoing interfaces are called by components, typically to notify clients of events that occur.
An operation is similar to a method in an object-oriented language, but additional constraints
are often imposed by component models, related to the types used for operation arguments
as well as error handling. Incoming and outgoing interfaces are also known as provided and
required interfaces, respectively. They form the basis for connection-oriented programming,
enabling components to be glued together.

When a statically linked procedural library is used, the implementation is known at
compile-time (a priori). Interfaces to such libraries are known as direct interfaces, as the
implementation is known beforehand. Object interfaces are indirect, in the sense that the
actual implementation is only known at runtime. This is also known as dynamic dispatch
or late binding (explored in detail in Chapter 3). Dynamic dispatch enables classes to have
multiple personalities by implementing multiple interfaces—this is known as polymorphism in
object-oriented programming.

It is hard to overemphasize the role of interfaces—they make it possible to program to
a specification, and not to a concrete implementation. Interfaces play the same role as the
standards that allow electrical outlets and the plugs they accept to work together—whether
a vacuum cleaner or a power tool is connected to an electrical outlet is immaterial, as long
as it can draw current in a standardized way.7 Two components that implement the same
interfaces and exhibit the same runtime behavior are substitutable for one another (known as
the principle of substitutability) (Eriksson et al. 2004). This is often cited as an important
business case for component technology—enabling a company to replace a component with a
less expensive one from a competing vendor, or replacing a component from a vendor that has
gone out of business (Tracz 2001). (In practice, there are monumental challenges to overcome
to make the behavior of all but the simplest components compatible to the degree required to
make one component completely substitutable for another.)

A component is a self-standing, independent unit that may be deployed separately from
the clients that use it. It has no observable state. The source code of a component may or
may not be available; it may be shipped only in binary form. If a component is dependent on
any entities other than the environment it is written for, including the component model, such
dependencies should be explicitly noted in machine-readable form (Heineman and Councill
2001b). Components should be able to indicate their version, making it possible for a component
model implementation to simultaneously load different versions of the same component. (In
large systems with complex dependencies, it is common for components to indirectly depend
on different versions of the same component.)

It must be possible to differentiate between different components, classes and interfaces,
at compile-time and at runtime. For this reason, these entities are assigned names, one that
is used at compile-time and one that is used at runtime. The compile-time name is for the
benefit of human developers, and should thus be human-readable, but need not be unique.

7A well-worn joke is that we love standards, that is why we have so many of them. Obviously, if there
is one “standard” per implementation, nothing has been gained in the way of interoperability, and the large
number of standards for electrical outlets helps to illustrate this.

7

1. Confronting the software crisis

The name used at runtime, however, must have a very high probability of being globally
unique. The runtime name assigned to a component or interface must be such that it is very
probable that no such name has been created in the past, and that no such name will be
created in the future. Component models use a variety of strategies to try to ensure that this
property holds. Services are often provided that activate components and instantiate classes
given their runtime names.

Component models standardize a host of other facets. These include error handling,
memory management, the deployment file format for components and metadata (such as type
information available at runtime).

In addition, component technology is also associated with a number of more complex
concepts:

• Programming language agnosticism. Component models dictate standards that
make it possible to access components from a variety of programming languages, and
also write components using different languages. Interacting with a component written
in a different programming language should ideally feel as natural as interacting with
code written in the native language.

• Location-transparent invocations. Component technology may be used to enable a
client to remain oblivious to whether a component is executing in the client’s operating
system process, in another process on the same computer, or on a different computer
altogether, perhaps halfway across the world. Component model implementations
can make all components appear as though they are executing in the client’s process,
regardless of whether this is actually the case. In an enterprise setting, this is one of
the selling points of component technology, as it makes it possible for services running
on different servers and on different platforms to interoperate (which is often known as
distributed computing).

• Declarative services. Some component models support associating components and
objects with declarative attributes that help programmers manage such disparate things
as concurrency, database transactions and security boundaries (Szyperski et al. 2002:430).
Declarative attributes save the programmer from having to write error-prone code, serve
as machine-readable documentation and make it possible to enforce architectural rules.

1.5 Beyond object-orientation?
Object-oriented programming has been criticized for failing to enable code reuse, and as a
result for failing to establish significant “object” markets (Sullivan 2001; Pfister and Szyperski
1996). Component technology is designed to overcome these perceived shortcomings, and is
by its proponents considered to be not only an evolution of object-oriented programming, but
a successor paradigm in the Kuhnian sense.8 Heineman and Councill (2001c) elaborate:

We believe that object-oriented [...] analysis, design, and programming were over-
hyped and over-sold. Early courses and seminars in [object-orientation] described
the technology as an elixir for all that was wrong with years of poor analyses,

8Thomas Kuhn argued that science does not progress linearly, but rather in transformational, revolutionary
shifts (Chalmers 1999).

8

1.6. Muddying the waters

design, and programming practices. It didn’t take long for information technology
[...] departments and many independent software vendors [...] to realize that
[object-orientation] was a very expensive methodology that ironically had been
sold to senior management as a way to save money.

In 1994, Jon Udell wrote of “object technology” in the imperfect tense:

Object technology failed to deliver on the promise of reuse. [...] What role will
object-oriented programming play in the component-software revolution that’s now
finally under way?

Indeed, distributing and selling classes in binary form has traditionally been complicated
by the lack of standards—even different implementations of some languages, such as C++,
are binary incompatible. Distributing classes as source code is often not desirable for vendors
that wish to maintain some modicum of secrecy. Obviously, lack of interoperability hampers
adoption. What component technology brings to the table is the promise of standards that
make reuse possible across different programming languages and vendors (Sullivan 2001).
Indeed, component models typically standardize objects in addition to components.

Object-orientation gives developers the tools to define entities that encapsulate and operate
on their own state. Components provide a higher-level abstraction, much like a library or a
module, as the containers of classes. Hence, object-orientation and “component-orientation”
are orthogonal and complementary concepts.

1.6 Muddying the waters
Having disparate services residing on different machines and implemented in different pro-
gramming languages is not the sole domain of component technology. Servers and clients have
communicated using well-specified protocols long before the advent of component technology.9
Nor is reuse an innovation introduced with component technology. Desktop applications have
successfully reused functionality from class libraries, procedural libraries and the operating
system on which they run for years. Thousands of dynamically linked libraries have been
developed and sold, and nary a software component, as defined on page 5, has been in use.
Component technology is at its most pure an attempt to standardize some of the infrastructure
that has been continually reinvented over the years, an ambitious attempt to create standards
for everything from what an object looks like in memory, to the protocol used when two
objects communicate over a network, to the declarative attributes used to safely store data
in a database. Component technology as a term is thus nearly all-encompassing, and some
implementations are as a result very complex.

The definitions adopted for this thesis deliberately exclude many successful forms of
software reuse. In a sense, the operating system and its applications make up the most suc-
cessful component ecosystem in existence: standardized components in the form of processes
that communicate with the component model implementation—the operating system—using
well-defined standards—system calls (Weinreich and Sametinger 2001). Dynamically linked pro-
cedural libraries are a very successful form of reuse, and provide robust language independence
by standardizing procedural invocations (Szyperski et al. 2002:209).

9Indeed, component technology’s support for location-transparent invocations grew out of traditional remote
procedure calls.

9

1. Confronting the software crisis

Despite their successes, none of the aforementioned entities qualify as components under
the definitions adopted at the beginning of this chapter. Applications are too coarse-grained
and too project-specific to be considered components—applications are built by composing
components, they are not themselves components. Dynamically linked libraries provide a useful
platform on which to build component technology (as detailed in Chapter 4), but cannot in
themselves be considered components, as they provide no vendor-agnostic support for objects,
and different versions of the same library cannot easily be loaded simultaneously, as they
have no identity at runtime.10 Component technology lays down the standards that enable
the properties mentioned in this chapter, including rich reuse, support for object-orientation,
language- and platform-neutrality, location-transparent invocations and declarative services.

1.7 Enterprise services
A number of enterprise services are often layered on top of component models. These services
automate some of the tasks people often face in enterprise settings, typically by making it
possible to replace manually written, and often error-prone, imperative code with declarative
attributes. Enterprise computing often implies that services run on different machines, which
benefits from the support for location-transparent invocations often provided by component
models.

Component model implementations used in the enterprise typically come bundled with
standardized servers that host components, known as application servers. Having a standard
server implementation helps developers focus on writing domain-specific code. An application
server is used to encapsulate business logic, and typically sits between a user-facing front-end,
such as a web page or a standard application, and a persistence layer in the form of a database
server. An application server is a complete server, but needs business logic in the form of
components to be plugged in before it can do anything useful.

This is a list of some enterprise services typically provided by component models intended
for use in the enterprise:

• Transaction processing. Modern database servers use transactions to group a set
of database operations that must be either committed as a group, or not at all, in
order to maintain data integrity. Component models automatically manage transactions
if declarative attributes to that effect are set. A transaction is committed if a set of
operations complete successfully, and is rolled back if errors are signaled.

• Loosely coupled events. Traditionally, event consumers subscribe to events by
communicating directly with the event producer. This feature decouples consumers
and producers by introducing an event service, which enables features such as efficient
multicasting and filtering. Events can often be subscribed to by setting a declarative
attribute.

• Deferred processing. Some requests need not be performed right away and can be
postponed for later. If the component which is to perform the service is not available,

10A dynamically linked library can certainly have an identity at runtime, if loaded explicitly and not
implicitly. Combining explicit loading with a way to retrieve the version number from a library, multiple
versions of a library can be loaded simultaneously. Adding object semantics on top of procedural invocations is
also possible, and with these additions, a dynamically linked library would qualify as a software component.
These issues are discussed in Chapter 4.

10

1.7. Enterprise services

the request is put in a queue. A component may be unavailable for a variety of reasons,
such as when the network is unreachable or the computer on which the component runs
is powered off. This feature may also be used to schedule jobs to execute during off-peak
periods, and to balance the load across several machines.

• Security. Certain services may only be available to components running as privileged
users. The security model of a component model can help enforce security policies by
preventing access to certain services. Access may be barred to certain components,
implementations of certain interfaces, or even to specific operations.

• Just-in-time activation. Component models normally strive to keep instances alive
for as long as there are active references to them. This feature helps conserve resources
on a server by destroying instances that are referenced, and transparently instantiating
them anew when they are accessed.

• Synchronization. Objects that are not reentrant should not allow multiple simultane-
ous threads of execution. Such objects can be tagged with a declarative attribute that
enables a component model implementation to bar concurrent access.

• Object pooling. Keeping instantiated objects in a pool for later reuse can significantly
boost performance. A pool contains instantiated objects, ready to be used. When an
active object is no longer used, it can be put back into the pool for later use. Declarative
attributes can typically be used to configure certain aspects of the pool, such as its
maximum size.

11

CHAPTER 2
Realizing software components

A large number of component models partly or fully conform to the definitions of Chapter 1.
Some are specific to a certain domain, while others are a more generic nature. Domain-specific
component models include plug-ins for software applications (such as web browsers, photo
manipulation software and audio players), as well as components running in application servers
(for instance, generating personalized web pages on-demand with the aid of a database server).
This thesis is mainly concerned with attempts at building component models that are not
limited to any one domain.

This chapter serves the dual purposes of tracing the evolution of component models, and
in so doing, introduces many of the concepts that enable software to be usable as components.
The large number of component models with differing goals and terminology makes this an
imprecise task.

Literary criticism cautions that there is no final reading of a text. Following this, and
considering component technology in all its forms as the text, no one interpretation can be
seen to represent the objective “truth.” Yet, this chapter attempts to categorize component
models into three somewhat arbitrary generations. The first-generation component models
are proprietary, whereas the second-generation component models are standards-based. Both
target native code. The third-generation component models discussed here target virtual
machines.

2.1 First-generation component models

Components written for first-generation component models are often used in a visual designer
that helps developers rapidly construct graphical applications. These component models focus
solely on the desktop and not on the enterprise. Such components typically contain graphical
controls (also known as widgets), that are manipulated visually. A designer can drag a control
to an application window that is under construction, position and resize it, and customize it
by changing its properties. A push button may allow its appearance to be customized, for
example. A programmer is likely to want custom code to be executed when certain actions
occur at runtime, such as a user pressing a button, which is accomplished by adding event
handlers to controls.

13

2. Realizing software components

Components that contain non-graphical controls may also be created for these environments,
in some cases significantly extending their functionality. Such an environment may only allow
slow-performing scripts to run, making it impractical or impossible to write lower-level code
like parts of a network protocol stack. Higher-performing code, written using a traditional
programming language, may be packaged as components, whose non-graphical controls are
then composed using a visual designer. Provided that all required components are available and
can be used as-is, this approach makes it easy to combine components in ever-new assemblies.
Creating graphical front-ends to corporate relational databases is a common use of application
builders that use first-generation component models (making use of data-aware controls).

Components written for a first-generation component model are, at least in theory, tied
to a single environment, and follow only vendor-specific standards.1 They run in the caller’s
operating system process, do not necessarily rely on interfaces and dynamic dispatch, use
explicit memory management and are written for the target machine’s native instruction set.
Many of the properties enumerated in Chapter 1 do no apply to these components. Components
are either distributed as dynamically linked libraries that export vendor-mandated symbols,
or are simply statically linked with the applications that use them. Object semantics, if any,
are proprietary to the vendor. Examples of environments supporting these component models
include early versions of Microsoft’s Visual Basic and Embarcadero’s Delphi.

Despite their simplicity—or perhaps because of it—components written for these environ-
ments have done well, both as vehicles for reuse and in the marketplace (Udell 1994).

2.2 Second-generation component models

The component models introduced after the first generation are far more ambitious, and
encompass far more functionality. No longer tied to a single platform or programming language,
they are often based on published specifications or even formal standards. They make it possible
to use services running in other processes and on other computers, and include standards for
such disparate things as dynamic dispatch, memory management, distribution formats and
naming. They target the enterprise in addition to the desktop. They abstract away notions
of where a component is executing, and tackle issues ranging from concurrency to working
with database transactions. Their ambition, compounded by the fact that they are layered
on top of traditional programming languages and target a wide range of machines, makes
them significantly more complex than the comparatively simple first-generation component
models. As they target platforms with no object models of their own, they standardize objects
in addition to components. Microsoft’s Component Object Model (COM) and the Object
Management Group’s Common Object Request Broker Architecture (OMG’s CORBA) are
prominent members of this generation.

2.2.1 Realizing interfaces

Objects provided by a component conforming to a second-generation component model are
never accessed directly, they are always accessed through one of the interfaces they implement.
As components may be written in languages with no native support for interfaces, they are
defined in an auxiliary descriptive language that allows no code, only definitions of interfaces,

1The dearth of published vendor-neutral standards does not preclude a vendor from reverse-engineering the
products of a competitor, and offering support for hosting the same kind of components (Udell 1994).

14

2.2. Second-generation component models

their operations and the types that are used. These languages are broadly known as interface
description languages, widely known by the abbreviation IDL. (A large number of incompatible
languages lay claim to the name “IDL.”)

Code generators that come with component model implementations, known as IDL com-
pilers, take an IDL file as input and generate language bindings for a supported programming
language.2 Language bindings make it possible to access components from multiple languages
and ideally conform to the target language to a great extent, making components feel like
a natural part of the target environment. Some language bindings, typically for scripting
languages, may not allow components to be authored in the target language. Such languages
are restricted to accessing components written in other languages.

An operation in an interface is mapped to the most appropriate construct in the target
language. For a procedural language, this is a procedure or a function; for an object-oriented
language, this is a method or an operation. A type is mapped to the native type most
appropriate for the target language—a “number” type used in an IDL file may be mapped
to the “double” type in a binding for the C language, for instance. If the execution of an
operation fails, this is normally communicated by throwing an exception in a target language
that supports exceptions, or by returning an error code in a language with no such support.
(True return values are communicated using output arguments when the native return value
is used for error information.)

2.2.2 Calling in-process components

Invoking operations of components that run in-process can be realized in two primary ways.
One approach is to lay down a binary standard that covers all components written for the
component model, regardless of what programming language they are implemented in. At its
core, this approach is similar to how procedural libraries work. A procedural library can be
used by a program written in a programming language different from that of the library, as
long as the program and library are both compiled for the same architecture and the program
is aware of how to call procedures contained in the library. Procedural invocations are covered
by standards known as calling conventions that standardize the mundane technical means used
when one procedure calls another. This includes the order in which arguments are transferred,
which arguments are transferred on the call stack and which are transferred in CPU registers
(if any), handling of return values and stack clean-up.

Object-oriented programming languages need to handle all of the above, but also need
to take objects into account. Specifically, the instance data of the receiving object (its state)
must be passed, and there must be a way to realize dynamic dispatch (that is, to look up the
implementation at runtime as opposed to at compile-time). Second-generation component
models target architectures that are not, in themselves, object-aware, and thus must standardize
object invocations (they also act as object models). These issues are explored in Chapter 3
and Chapter 4. COM is likely the best-known component model that is a binary standard.

The alternative approach, exemplified by CORBA, is to standardize on the IDL dialect
in conjunction with formalized language bindings. This approach requires clients to rely on
runtime software to make calls to objects. This software is supplied with the component
model implementation and, at least partly, runs in the same process as the client. Vendors of
different component model implementations may use different means to realize component calls.

2Language bindings can also be generated from other representations of interfaces, such as COM type
libraries, which contain roughly the same information as IDL files in a format that is more easily parsed.

15

2. Realizing software components

Client Client-side proxy ServerServer-side proxy

Context ContextMessages

Figure 2.1 Client-side and server-side proxies

In order to ensure that a client can use any conforming component model implementation
with components tested with a different implementation, different language bindings must
be carefully standardized. A client written in one programming language can communicate
with a component written in another language as long as the component model implemen-
tation supports both languages. The runtime software supplied with the component model
implementation is responsible for translating calls from one language to another.

2.2.3 Calling out-of-process components

The raison d’être of many component models, such as CORBA, is to enable distributed systems
in the enterprise. These systems typically consist of many disparate services that run either
on different computers3 or in different operating system processes on the same machine. Some
of these services may be written explicitly for the component model, while others may consist
of legacy software wrapped by components (acting as adapters, in the design pattern sense
(Gamma et al. 1995)). Distributed architectures in this fashion have many names, including
Service-Oriented Architecture (SOA) and Service Component Architecture (SCA).

Component models strive to make it easy to call remote objects, generally by providing a
stand-in object that runs in the client’s context and forwards all calls to the remote object.
The stand-in object masquerades as the remote object by implementing the interface that
the client wishes to use to communicate with the remote object. A stand-in object is known
as a client-side proxy. On the server end, a server-side proxy receives messages sent by
the client-side proxy, and dispatches calls to the server-side object using standard calling
conventions. This is illustrated in Figure 2.1. The classes that are instantiated to form
proxies are often generated by an IDL compiler. It is said that component technology enables
location-transparent invocations due to this ease-of-use property. Using component technology
to call out-of-process components is one way of realizing inter-process communication (IPC)
and inter-machine communication. This is similar to traditional remote procedure calls, but
with object semantics.

Component models that are binary standards, such as COM, have no need for proxies when
two objects communicate that run in the same process; they communicate directly.4 Without
such a binary standard, as with CORBA, objects rely on a runtime part of the component
model implementation to facilitate in-process calls, hence requiring the use of proxies for all
types of calls. A client-side proxy masquerades as the target object and forwards calls to the
runtime system, which then forwards the call to the server-side proxy, which finally calls the
target object (which is not necessarily remote).

3Increasingly, many of these “computers” are virtualized, and thus run on the same physical computer.
4COM sometimes does use proxies even for objects that run in the same process. See Chapter 7.

16

2.2. Second-generation component models

When making an in-process call, execution leaves the client operation body for the duration
of the call. This behavior does not occur naturally when calling on the services of a remote
object—if no steps are taken to prevent this behavior, execution only leaves the client operation
body while a proxy forwards the call to the remote object. To prevent the client process from
continuing to execute while the remote object is processing a call, the client process or thread
is blocked. When it resumes execution, the remote object has finished execution, and the
return value (if any) of the invoked operation is delivered to the client, just as though the
target object had been running in-process. This type of call is known as a synchronous call.

Synchronous calls are convenient, as they ostensibly work just like calls to objects running
in-process.5 The component model implementation takes care to hide the technical machinery
used to communicate with the remote object. There are times when it is desirable for the client
code to continue execution while a remote object is executing. Calls enabling this behavior are
known as asynchronous calls. The client and remote object thus execute concurrently, and the
remote object notifies the client when it has finished executing, if a reply has been requested.6
This is beneficial for long-running operations, but is slightly less convenient for developers,
as clients need to keep track of additional states (whether or not it is waiting for a remote
operation to complete). With synchronous calls, the client is relieved from having to keep
track of these states, as it is blocked from executing while the remote call is on-going. Some
component models only support synchronous calls. Those that do support asynchronous calls
often default to synchronous calls.

In order to call a remote object, a component model implementation must marshal calls
across processes and, possibly, machines. Marshalling entails converting an invocation into an
unambiguous binary format, the wire format, which holds information on the operation to be
called, as well as its arguments. Component models thus standardize network protocols used
to carry calls to out-of-process objects. Client-side proxies are responsible for creating a data
stream that conforms to this protocol and sending it to a server-side proxy, which unmarshals
the call and invokes the corresponding operation on the remote object. If the client asked to
be notified upon completion of the remote operation, the server-side proxy packages the return
value in a data stream that conforms to the protocol, and sends it to the client-side proxy
which returns it to the original caller. The client and the remote object are both unaware of
the work done by the server-side and client-side proxies to facilitate the call.

Simple types such as strings and integers are always passed by value when marshalled, in
effect placing the argument data in the data stream. References to an implementation of an
interface, however, are often passed by reference, meaning that only a means of identifying
the implementation is placed in the data stream. As noted, in order to communicate with a
remote object, client-side and server-side proxies need to be set up. When a remote object
receives an interface argument that refers to an object that runs in the client’s context, a
reverse connection needs to be set up—in order to communicate with the object that runs in
the client’s context, the remote object needs to have a client-side proxy in its context that

5There are subtle problems associated with synchronous calls. Notably, they may cause deadlocks (perma-
nently blocked processes or threads), and they are inherently much slower than the in-process calls they try to
mimic. These issues are briefly discussed on page 100.

6The reply will generally be delivered by sending a message to the client. Long-running programs that sit
idle from time to time, such as servers and applications that interact with users, are generally message-oriented.
The standard implementation of such programs is to have an outer message loop that waits for messages and
dispatches them to the target objects. The message loop is often part of a system library, and is thus often
hidden from developers.

17

2. Realizing software components

Client

Client-side proxy

Server-side proxy

Server

Client-side proxy

Server-side proxy

Context ContextMessages

Figure 2.2 Interface reference passed to a server

communicates with a server-side proxy that runs in the client’s context (see Figure 2.2).
Some component models support passing interface references by value. The instance data

of an object that supports being passed by value is written to the data stream (it is serialized)
by the client-side proxy, and is reconstructed (deserialized) by the server-side proxy.

The network protocols used by component models should generally be well-specified in
terms of how data is represented—for instance, different machine architectures often use
different byte orders. A component model that does not allow calls across a network, and is
thus limited to one machine, may relax these rules, as the client-side and server-side proxies
are guaranteed to run on the same machine (and have likely been generated by the same IDL
compiler).

2.2.4 Late binding versus very late binding

The implementations of classes are, as noted, always hidden behind their interfaces. As such,
a client is unaware of the precise implementation it is calling, and thus cannot be bound to
an implementation at compile-time. Retrieving a reference to the implementation is done
at runtime. The client does, however, have compile-time knowledge of the layout of the
interface—it knows, at compile-time, what operations are available, their arguments and their
types. It thus binds to the implementation of the interface dynamically, but checks the validity
of calls statically. Again, this is known as dynamic dispatch, or late binding.

In some environments, it may not be possible to have compile-time knowledge of interfaces
and their operations. An interpreter for a scripting language, to mention the most prominent
example, is not compiled against the myriad of components that a script may want to access.
As such, the validity of calls must be checked at runtime. This requires that metadata in the
form of runtime type information is not only available at compile-time, but also at runtime.
This is known as very late binding.

Some component models, notably COM, take the approach of supplying a standard,
domain-agnostic interface that is used for dynamically checked invocations (in COM, this
interface is named IDispatch). Classes that wish to support being invoked by environments
that need to check invocations at runtime must also implement this interface (often in addition
to interfaces to which calls are checked statically). Script interpreters that support such a
component model have compile-time knowledge of this interface, and facilitate access to it from
scripts. The implementation of this interface can use self-contained code specific to a certain

18

2.3. Third-generation component models

class to check invocations, or the implementation can be generic and rely on runtime-accessible
type information deployed to end-users’ systems (discussed on page 73). Other component
models, notably CORBA, require clients to use a single system-provided, domain-agnostic
implementation to invoke calls using very late binding (which also requires the presence of
type information at runtime).

2.2.5 Managing memory

As components may be written in languages that use different memory management strategies,
it is impossible for the runtime system of a component model implementation to allocate
memory for objects. Component models that use formalized language bindings delegate
object instantiation to them, whereas those with no such formalized bindings generally require
that components provide factories that instantiate objects. In order to instantiate objects,
component model implementations must be able to map runtime names of objects to the
components that house them, and to their factories.

Some second-generation component models set standards for managing the lifetime of
objects. First-generation component models use explicit lifetime management, meaning that
an instance can be explicitly destroyed by any party. This strategy does not work well with a
large number of independent clients that are not aware of one another. A client can only be
expected to know when the client itself no longer has a need for an object reference; it cannot
be expected to know, and should not know, whether other clients still have live references to
an object. To solve this, many second-generation component models use the simple strategy
of having every object include a count of the number of clients that have live references to
it—this strategy is known as reference counting. Clients notify objects when they store a
reference for later use (thus incrementing the reference count) and when they no longer have
a need for a previously-held reference (thus decrementing the reference count). The object
destroys itself when there are no clients that hold references to it (that is, when the reference
count reaches zero). There is thus no need for a destruction counterpart to factories, as objects
are responsible for managing their own lifetime.

Reference counting is a form of cooperative garbage collection. It is simple to implement
and understand, but has the significant weakness that all clients need to play by the rules at
all times. If one client malfunctions, memory leaks or system breakage will ensue.

Counting references has the well-known problem of not being able to handle cyclic references.
Consider a trivial example: If an object has a reference to another object, which itself references
the first object, these two objects will never be destroyed, regardless of whether there are
external parties that reference either; they keep each other alive. (Non-trivial examples
normally include a much larger set of objects in the cycle.) This scenario is especially common
when one object wishes to subscribe to events from another—the subscribing object obviously
must reference the event-providing object in order to subscribe, and when the subscription
request has completed, the reverse is also true. Second-generation component models often
include means—often error-prone—that seek to make it possible to break such cycles (Szyperski
et al. 2002:335).

2.3 Third-generation component models
The complexity of second-generation component models stems partly from their ambition, and
partly from the fact that they only introduce new technology on top of traditional technology,

19

2. Realizing software components

making no attempt to redefine the traditional technology and the abstractions that come
with it. These component models work with traditional languages, are written for traditional
platforms, and provide tools that are mere adjuncts to the tools that come with the platforms
they target, such as compilers and linkers. The old technology is left undisturbed—it is simply
built on top of. Added to, not changed.

Third-generation component models are radically different in that they no longer target a
large number of platforms. They target just one, and one that already provides many of the
services associated with second-generation component models, making for conceptually much
simpler technology (but no less powerful). Prominent examples of the platforms that third-
generation component models are built on top of include Sun’s Java platform, and Microsoft’s
.NET platform. Concrete component models that take advantage of these platforms are
studied in Chapter 5.

The platforms that third-generation component models are built on have virtual machines
at their core. As a result, components written for such a platform run on many different
native platforms, but only need to target one virtual platform. As long as a component does
not make direct use of the services offered by the native platform, it will run anywhere there
is an implementation of the virtual machine. Technologies such as just-in-time compilation
(JIT) and ahead-of-time compilation (AOT) help make code written for virtual machines
competitive with code compiled for native architectures from a performance point of view.7

There have been proposals suggesting that components should never run in the caller’s
operating system process to protect stateful objects instantiated by the component from
tampering, using hardware memory protection available in modern architectures (Szyperski
et al. 2002:79). Such heavy-handed methods are made obsolete by forcing components to be
written for a virtual machine that has no instructions that allow code to access memory directly
(or relegates such instructions to an “unsafe” mode that must be specifically enabled).8,9

Second-generation component models are forced to standardize concepts not directly related
to software components, such as memory management. The platforms that third-generation
component models build upon have subsumed many of these technologies, making it possible
for third-generation component models to focus on enabling software components. This makes
it significantly easier to use and understand third-generation component models, as they
simply extend the rich functionality of the platforms on which they are built.

7Just-in-time compilation and ahead-of-time compilation compile the machine instructions for the virtual
machine (known as bytecode) to machine instructions for the native processor, essentially treating the bytecode
the same way a compiler back-end treats the intermediate language produced by its front-end. Ahead-of-time
compilation, also known as “static compilation,” compiles bytecode to native machine code before the program
is executed. Just-in-time compilation, also known as “dynamic compilation,” compiles the whole program or
parts of it at runtime (parts that are not compiled are interpreted). Just-in-time compilation is interesting in
that it can take runtime aspects into account, meaning that the code it generates can, in theory, be better than
statically compiled code—eliminating unneeded dynamic dispatch or simplifying complex code that is always
used in one specific way, for instance (Stoodley et al. 2007).

8Some instructions may only be safe if used as prescribed. For instance, the Java virtual machine does
not allow programs written for it to jump to locations that are outside the currently executing method. A
“bytecode verifier” can be used to verify that untrusted code does not flout these rules before it is executed.

9This might be considered a computer application of the Sapir-Whorf hypothesis in linguistics, which
postulates that natural language shapes our perception of the world (McGee and Warms 2004). George Orwell
used the Sapir-Whorf hypothesis to great effect in his dystopian novel Nineteen Eighty-Four (2003), in which the
dictatorship has constructed a new language, Newspeak, which is a variant of English lacking words representing
concepts that the regime would prefer the people did not ponder, such as “rebellion” and “freedom.” A virtual
machine with no instructions for memory freedom (in the sense of being able to access and write to arbitrary
memory addresses) has no means of even expressing this concept.

20

2.3. Third-generation component models

These are some of the technologies standardized by second-generation component models
that are part of the platforms used by third-generation component models:

• Object model. Interfaces, classes and objects are directly supported by the platforms
discussed here, and by most of the programming languages that target these machines.
Late binding, implementing interfaces, instantiating objects and even extending classes
are thus directly supported by the virtual machines. Language-level support for interfaces
means that no separate interface description languages are needed; interfaces are simply
specified directly in the implementation language.

• Runtime metadata. These platforms maintain runtime-accessible metadata on classes,
interfaces and other types, making it possible to explore these aspects at runtime. This
support makes it easy to support very late binding, and thus scripting languages. Access
to type information at runtime also makes it possible to forego the generation of proxy
classes at build-time.

• Memory management. Third-generation component models rely on the automatic
memory management used by their platforms, which is universally garbage collection.

• Error handling. Whereas some second-generation component models resort to using
the return value of operations for error information, third-generation component models
use the exception handling standardized by their platforms.

• Naming. The platforms supporting third-generation component models mandate their
own naming scheme, which is simply adopted by the component models themselves.

Layering component technology on top of mature environments that already provide
support for object-orientation, runtime type information, garbage collection and the like
means that component technology can concern itself with only realizing software components,
considerably simplifying third-generation component models.

21

CHAPTER 3
Demystifying dynamic dispatch

Dynamic dispatch is at the heart of object-based component technology. Without it, freestand-
ing interfaces would not be possible. Dynamic dispatch, also known as late binding, makes it
possible to program to a specification and bind to an implementation at runtime.1

Chapter 2 introduces some of the technology used to make component technology a reality.
It glosses over the technical minutiae of dynamic dispatch, though, which this chapter aims to
rectify. During the course of this chapter, two example programs, written in the C programming
language, are developed that establish a set of conventions used when implementing object-
oriented programs in C. These conventions essentially form a complete object model, supporting
encapsulation and polymorphism, but not implementation inheritance or multiple interface
inheritance. Chapter 4 builds on this material to sketch a component model.

The first example program, which does not use dynamic dispatch, is intended to set the
stage for the second example program by introducing some fundamental concepts. The second
example program builds on this foundation by introducing dynamic dispatch. C is a good
choice for this task, as it has all the features needed to implement dynamic dispatch on top of
an existing procedural language. The first example also appears as functionally equivalent
Java code. Java already has the language constructs which are implemented for C in this
chapter—classes, objects and interfaces.

There have been many attempts to bring object-oriented programming to C. In an
article from 1997, Samek presents a battery of C macros and best practices making it
possible to implement object-oriented constructs, including implementation inheritance. Bjarne
Stroustrup’s first C++ compiler, Cfront, produced C code to be compiled by a traditional C
compiler (Stroustrup 1994:66).

Another example is the GNOME desktop environment—primarily used with Unix-like
operating systems—which uses the GObject object model pervasively. GObject is written in
C, and may be used directly in native applications or through bindings to other languages.
Vala is a fully object-oriented language that targets native code and uses GObject as its object
model. Like Cfront, its compiler produces C code.

1The form of dynamic dispatch discussed in this thesis is single dispatch, as opposed to multiple dispatch.
Single dispatch resolves what implementation to use by only taking into account the type of the first argument
(which by convention is the instance data of objects in object-oriented systems). Multiple dispatch takes the
types of all arguments into account.

23

3. Demystifying dynamic dispatch

Some of the examples in this chapter are heavily abridged due to space constraints. The
reader is encouraged to download and experiment with the source code. The C source code
should be compatible with all compilers adhering to the C99 standard.2 It is available at
http://www.polberger.se/components/.

3.1 A binary tree node in C

A node in a binary tree has at most two children, referred to as the left and right nodes. In
object-oriented programming, a tree node is naturally modeled as an object.

Implementing such a node in Java is straight-forward, as the Java language and platform
come with support for object-oriented programming, automatic memory management and
structured error handling (in the form of exceptions). A concise sample implementation, which
allows arbitrary data to be associated with a node, is shown in Listing 3.1.

Listing 3.1 BinaryTreeNode.java
/∗∗

∗ Ins tances o f t h i s c l a s s r ep re s en t immutable nodes in a b inary
∗ t r e e . Arb i t rary data may be a s s o c i a t e d wi th a node .
∗
∗ @param <D>
∗ the type o f data o b j e c t s maintained by t h i s node and i t s
∗ c h i l d r en .
∗/

public f ina l class BinaryTreeNode<D>
{

/∗∗
∗ The c l i e n t−de f ined data a s s o c i a t e d wi th t h i s node , or {@code
∗ nu l l } i f t h e r e i s no such data .
∗/

private f ina l D data ;

/∗∗
∗ The l e f t node o f t h i s node , or {@code nu l l } i f t h e r e i s no such
∗ node .
∗/

private f ina l BinaryTreeNode<D> le f tNode ;

/∗∗
∗ The r i g h t node o f t h i s node , or {@code nu l l } i f t h e r e i s no such
∗ node .
∗/

private f ina l BinaryTreeNode<D> rightNode ;

/∗∗
∗ Creates an ins tance o f t h i s c l a s s .
∗

2The Java source code has been tested with Sun Microsystems’s Java Development Kit (JDK) for the
Standard Edition, version 6. The C source code has been tested with the C front-end of the GNU Compiler
Collection (GCC), version 4.3.3. The example programs have been developed on an x86-64 Linux system, and
Valgrind 3.4.1 has been used to check the C programs for memory leaks.

24

http://www.polberger.se/components/thesis-src.zip
http://www.polberger.se/components/

3.1. A binary tree node in C

∗ @param data
∗ the c l i e n t−de f ined data o f t h i s node , or {@code nu l l } .
∗ @param le f tNode
∗ the l e f t node o f t h i s node , or {@code nu l l } .
∗ @param rightNode
∗ the r i g h t node o f t h i s node , or {@code nu l l } .
∗/

public BinaryTreeNode (D data ,
BinaryTreeNode<D> leftNode ,
BinaryTreeNode<D> rightNode)

{
this . data = data ;
this . l e f tNode = le f tNode ;
this . r ightNode = rightNode ;

}

/∗∗
∗ Returns the c l i e n t−de f ined data a s s o c i a t e d wi th t h i s node , or
∗ {@code nu l l } i f t h e r e i s no such data .
∗
∗ @return
∗ the data a s s o c i a t e d wi th t h i s node , or {@code nu l l } .
∗/

public D data ()
{

return data ;
}

/∗∗
∗ Returns the l e f t node o f t h i s node , or {@code nu l l } i f t h e r e i s
∗ no such node .
∗
∗ @return
∗ the l e f t node o f t h i s node , or {@code nu l l } .
∗/

public BinaryTreeNode<D> le f tNode ()
{

return l e f tNode ;
}

/∗∗
∗ Returns the r i g h t node o f t h i s node , or {@code nu l l } i f t h e r e i s
∗ no such node .
∗
∗ @return
∗ the r i g h t node o f t h i s node , or {@code nu l l } .
∗/

public BinaryTreeNode<D> rightNode ()
{

return r ightNode ;
}

}

25

3. Demystifying dynamic dispatch

Implementing the same class in C is more involved, as the object-oriented facets need to be
handled explicitly. One facet that is not relevant to this example, however, is dynamic dispatch.
As the BinaryTreeNode class does not implement any interfaces, it must be referenced directly
(through its class interface). Also, as it is declared final, it may not be extended, and as a
result, there is no ambiguity as to what implementation is referred to when the BinaryTreeNode
type is referenced. This lack of polymorphic behavior allows the compiler to bind a client
statically to the implementation.

Listing 3.2 shows the header file for a C implementation of this class, and Listing 3.3 the
implementation.

Listing 3.2 BinaryTreeNode.h
/∗∗

∗ @f i l e
∗
∗ This f i l e con ta ins func t i on pro to t ype s f o r the opera t i ons o f the
∗ <code>BinaryTreeNode</code> c l a s s .
∗/

#ifndef INCLUSION_GUARD_BINARY_TREE_NODE
#define INCLUSION_GUARD_BINARY_TREE_NODE

#include <stdboo l . h>

/∗∗
∗ This type r ep r e s en t s the <code>BinaryTreeNode</code>
∗ c l a s s . Ins tances o f t h i s c l a s s r ep re s en t immutable nodes in a
∗ b inary t r e e . Arb i t rary data may be a s s o c i a t e d wi th a node .
∗/

typedef struct BinaryTreeNode_s BinaryTreeNode_t ;

/∗∗
∗ Creates an ins tance o f the <code>BinaryTreeNode</code> c l a s s .
∗
∗ @param [in] pData
∗ the c l i e n t−de f ined data o f t h i s node , or <code>NULL</code >.
∗ @param [in] pLeftNode
∗ the l e f t node o f t h i s node , or <code>NULL</code >.
∗ @param [in] pRightNode
∗ the r i g h t node o f t h i s node , or <code>NULL</code >.
∗ @param [out] ppThis
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the in s tance o f the
∗ <code>BinaryTreeNode</code> c l a s s . Must not be <code>NULL</code >.
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

bool BinaryTreeNode_Create (void∗ pData ,
BinaryTreeNode_t∗ pLeftNode ,
BinaryTreeNode_t∗ pRightNode ,
BinaryTreeNode_t∗∗ ppThis) ;

26

3.1. A binary tree node in C

/∗∗
∗ Destroys t h i s in s tance o f the <code>BinaryTreeNode</code>
∗ c l a s s . The ch i l d r en o f t h i s node w i l l not be r e c u r s i v e l y des t royed
∗ as a r e s u l t o f c a l l i n g t h i s opera t ion . I f the c l i e n t−de f ined data
∗ a s s o c i a t e d wi th t h i s node has been i n i t i a l i z e d to po in t to memory
∗ a l l o c a t e d at runtime , t h i s memory must be manually d e a l l o c a t e d
∗ b e f o r e c a l l i n g t h i s opera t ion . This opera t ion always succeeds .
∗
∗ @param [in] pThis
∗ an ins tance o f the <code>BinaryTreeNode</code> c l a s s . May be
∗ <code>NULL</code >.
∗/

void BinaryTreeNode_Destroy (BinaryTreeNode_t∗ pThis) ;

/∗∗
∗ Returns the c l i e n t−de f ined data a s s o c i a t e d wi th t h i s node , or
∗ <code>NULL</code> i f t h e r e i s no such data .
∗
∗ @param [in] pThis
∗ a po in t e r to the in s tance data o f t h i s
∗ <code>BinaryTreeNode</code> ob j e c t . Must not be
∗ <code>NULL</code >.
∗ @param [out] ppData
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the c l i e n t−de f ined
∗ data . Must not be <code>NULL</code >.
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

bool BinaryTreeNode_Data (BinaryTreeNode_t∗ pThis ,
void∗∗ ppData) ;

/∗∗
∗ Returns the l e f t node o f t h i s node , or <code>NULL</code> i f t h e r e
∗ i s no such node .
∗
∗ @param [in] pThis
∗ a po in t e r to the in s tance data o f t h i s
∗ <code>BinaryTreeNode</code> ob j e c t . Must not be
∗ <code>NULL</code >.
∗ @param [out] ppLeftNode
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the r e f e r ence to the
∗ l e f t node . Must not be <code>NULL</code >.
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

bool BinaryTreeNode_LeftNode (BinaryTreeNode_t∗ pThis ,
BinaryTreeNode_t∗∗ ppLeftNode) ;

/∗∗
∗ Returns the r i g h t node o f t h i s node , or <code>NULL</code> i f t h e r e
∗ i s no such node .

27

3. Demystifying dynamic dispatch

∗
∗ @param [in] pThis
∗ a po in t e r to the in s tance data o f t h i s
∗ <code>BinaryTreeNode</code> ob j e c t . Must not be
∗ <code>NULL</code >.
∗ @param [out] ppRightNode
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the r e f e r ence to the
∗ r i g h t node . Must not be <code>NULL</code >.
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

bool BinaryTreeNode_RightNode (BinaryTreeNode_t∗ pThis ,
BinaryTreeNode_t∗∗ ppRightNode) ;

#endif // INCLUSION_GUARD_BINARY_TREE_NODE

Listing 3.3 BinaryTreeNode.c
/∗∗

∗ @f i l e
∗
∗ This f i l e con ta ins a c l a s s , <code>BinaryTreeNode</code>, in s t ance s
∗ o f which rep r e s en t immutable nodes in a b inary t r e e . Arb i t rary data
∗ may be a s s o c i a t e d wi th a node .
∗/

#include <s t d l i b . h>
#include <stdboo l . h>
#include " BinaryTreeNode . h "

/∗∗
∗ This s t r u c t u r e r ep r e s en t s the in s tance data o f
∗ <code>BinaryTreeNode</code> o b j e c t s .
∗/
struct BinaryTreeNode_s
{

/∗∗
∗ Arb i t rary data a s s o c i a t e d wi th t h i s in s tance . May be
∗ <code>NULL</code >.
∗/

void∗ pData ;

/∗∗
∗ A po in t e r to the l e f t node po in ted to by t h i s node . May be
∗ <code>NULL</code >.
∗/

BinaryTreeNode_t∗ pLeftNode ;

/∗∗
∗ A po in t e r to the r i g h t node po in ted to by t h i s node . May be
∗ <code>NULL</code >.
∗/

28

3.1. A binary tree node in C

BinaryTreeNode_t∗ pRightNode ;
} ;

bool BinaryTreeNode_Create (void∗ pData ,
BinaryTreeNode_t∗ pLeftNode ,
BinaryTreeNode_t∗ pRightNode ,
BinaryTreeNode_t∗∗ ppThis)

{
BinaryTreeNode_t∗ pBinaryTreeNodeInstance = NULL;
bool r e s u l t = ppThis != NULL;

i f (r e s u l t)
{

pBinaryTreeNodeInstance = mal loc (s izeof (BinaryTreeNode_t)) ;
r e s u l t = pBinaryTreeNodeInstance != NULL;

}

i f (r e s u l t)
{

pBinaryTreeNodeInstance−>pData = pData ;
pBinaryTreeNodeInstance−>pLeftNode = pLeftNode ;
pBinaryTreeNodeInstance−>pRightNode = pRightNode ;
∗ppThis = pBinaryTreeNodeInstance ;

}
else i f (ppThis != NULL)
{

∗ppThis = NULL;
}

return r e s u l t ;
}

void BinaryTreeNode_Destroy (BinaryTreeNode_t∗ pThis)
{

i f (pThis != NULL)
{

f r e e (pThis) ;
}

}

bool BinaryTreeNode_Data (BinaryTreeNode_t∗ pThis ,
void∗∗ ppData)

{
bool r e s u l t = (pThis != NULL) && (ppData != NULL) ;

i f (r e s u l t)
{

∗ppData = pThis−>pData ;
}
else i f (ppData != NULL)
{

∗ppData = NULL;
}

29

3. Demystifying dynamic dispatch

return r e s u l t ;
}

bool BinaryTreeNode_LeftNode (BinaryTreeNode_t∗ pThis ,
BinaryTreeNode_t∗∗ ppLeftNode)

{
bool r e s u l t = (pThis != NULL) && (ppLeftNode != NULL) ;

i f (r e s u l t)
{

∗ppLeftNode = pThis−>pLeftNode ;
}
else i f (ppLeftNode != NULL)
{

∗ppLeftNode = NULL;
}

return r e s u l t ;
}

bool BinaryTreeNode_RightNode (BinaryTreeNode_t∗ pThis ,
BinaryTreeNode_t∗∗ ppRightNode)

{
bool r e s u l t = (pThis != NULL) && (ppRightNode != NULL) ;

i f (r e s u l t)
{

∗ppRightNode = pThis−>pRightNode ;
}
else i f (ppRightNode != NULL)
{

∗ppRightNode = NULL;
}

return r e s u l t ;
}

3.1.1 Name mangling

As C does not have class or namespace concepts, a different mechanism must be used to
indicate that a function should be considered an operation that is part of a class. Different
classes often have operations that share the same name, especially if they implement the same
interface, and it is essential that two operations may exist in the same project without causing
name conflicts.

One solution, employed here and which ensures that C function names are unique, is to
derive the function name from the class name and the operation name, joined together by
an underscore character. The data() operation of the BinaryTreeNode class thus becomes
BinaryTreeNode_Data().

This is a form of manual name mangling (also called name decoration). Name mangling
is often used by compilers targeting native code to encode additional information about

30

3.1. A binary tree node in C

a function as part of its runtime name. The information encoded depends on the calling
convention used, and may include, for instance, information on the arguments and return
value of a function. Name mangling can be used to encode data not recognized by traditional
file formats for executable files and the tools that operate on them (such as linkers). The
mangling of compile-time names used here ensures that there are no naming conflicts and
adds the name of the class as an aid to human developers.

3.1.2 Error handling

Exceptions change the normal flow of execution when abnormal events occur. Due to the lack
of language-level support for exceptions in C, a different means of expressing that an operation
could not successfully complete a request is needed. The standard library functions setjmp()
and longjmp() are sometimes used to replicate the exception mechanism of other languages,
but this approach is cumbersome to use and has been found to have poor performance (Jung
et al. 2008).3 A simpler approach is to use the return value of operations for error information,
and use an output argument for the true return value of the operation (if any). This technique
does have the unfortunate side effect of requiring that return values are checked after each
and every invocation, as seen in Listing 3.3.

Error information can be provided in a variety of ways:

• Boolean return value. The simplest approach is arguably to require that operations
return a boolean value indicating whether the invocation was successful. With this
approach, it is not possible to easily determine the source of an error, to differentiate
between different errors or to present human-readable information about the error.

• Enumerator return value. Using an enumerated type makes it possible to differentiate
between different errors, while retaining most of the simplicity of using a boolean return
value.

• Integer return value. An integer can obviously hold the same information as a boolean
value or an enumerator. Additional information may be conveyed by dividing the integer
space into different regions—for instance, the most significant bit can be used to signal
success or failure, the next four bits can be used to communicate the severity of the
error, and the remaining bits used to index into a table containing static information on
various errors, including localized error messages.

• Object return value. The most flexible way of conveying information on an error, of
the four options presented here, is to return a reference to an object if an error occurred,
or NULL otherwise. Such an object can contain a wealth of information on the error,
possibly including a stack trace and localized error messages. The downside to this
flexibility is that memory must likely be allocated dynamically, which the client must
take care to deallocate.

Despite the shortcomings of using a boolean return value, this is the approach used here,
due to its simplicity.

3Specifically, elaborate runtime book-keeping is needed to ensure that nested “catch” clauses work as
intended, and clean-up, in the form of “finally” sections, is cumbersome to implement. In addition, this approach
does not work well with component technology, as an exception may be thrown by an operation written in one
language, and caught by an operation written in another, possibly interpreted, language.

31

3. Demystifying dynamic dispatch

3.1.3 Instance data

An object combines state and behavior. The state of an object, often referred to as its instance
data, is a collection of data operated on by imperative code (the behavior). The most natural
way to represent instance data in C is as a structure, and this is the approach taken here.
When an object is instantiated, memory is allocated for the instance data on the heap. (Many
languages with built-in object models, such as C++, also allow objects to be allocated statically
on the call stack. Stack-allocated objects are not considered in this thesis.)

BinaryTreeNode_Create() and BinaryTreeNode_Destroy() in Listing 3.2 and Listing 3.3
serve as constructor and destructor, respectively, hiding the means used to allocate and
deallocate space for the instance data of objects. In this example, all instance variables of the
BinaryTreeNode class are accessible only to the class implementation (as indicated by their
private Java access specifiers). As a result, the members of the structure are hidden in the
implementation file, conceptually inaccessible from other code.

Operations operate on the instance data, and thus need a way to reference it. A reference
to the instance data is given as the first argument, which is normally hidden in languages that
natively support object-orientation, such as C++. (Component Pascal is one of the few such
languages that makes no attempt to hide this argument (Szyperski et al. 2002:331).) This
argument is known as this or self ; in Listing 3.2 and Listing 3.3, this argument is named pThis.

3.2 A syntax tree representing an arithmetic expression in C
Arithmetic expressions are traditionally written using infix notation, in which operators are
written between operands, and parentheses and precedence rules are used to resolve ambiguity
(5 + 2/3 is a simple example). As most popular programming languages use infix notation,
compiler front-ends must parse such expressions (typically using so-called operator-precedence
parsers). The result of such a process is often an unambiguous syntax tree that can be used
for further processing. The nodes of a syntax tree for arithmetic expressions are the focus of
this example.

Four different classes of nodes are used here:

• Binary operator nodes. Such nodes hold two operands and a binary operator, such
as addition, subtraction, multiplication or division. The operands may be arbitrary
nodes. A binary operator node is considered to be constant if both its operands are
constant.

• Unary operator nodes. Such nodes hold only one operand and a unary operator,
such as negation or a trigonometric operator. The operand may be an arbitrary node.
A unary operator is considered to be constant if its sole operand is constant.

• Literal operand nodes. Such nodes hold a literal, constant value. A literal operand
node is considered to be constant at all times, per definition.

• Identifier operand nodes. Such nodes hold the name of an identifier, which may be
either a variable or a constant. An identifier operand node is considered to be constant
if, and only if, the identifier it refers to is a constant.

Figure 3.1 shows one possible syntax tree that may result after parsing a sample arithmetic
expression. Constant nodes are shown in gray. (Being able to differentiate between constant

32

3.2. A syntax tree representing an arithmetic expression in C

2

+

- ×

z

y 6 3

−
÷

Figure 3.1 Syntax tree corresponding to the expression ((-y - 6 * 3) / z) + 2

and variable nodes allows for a common optimization known as constant folding, which entails
replacing fully constant subtrees with literal operand nodes representing their values. The
expression of Figure 3.1 would be written ((-y - 18) / z) + 2 after folding constants.)4

Nodes are naturally modeled as objects, instantiated from one of four classes, which in turn
serve as the default implementations of four interfaces, corresponding to the classes of nodes
listed on the facing page. This is depicted in Figure 3.2, using Unified Modeling Language
(UML) syntax. For instance, objects modeling binary operator nodes are instances of classes
implementing the BinaryOperatorNode interface. All objects modeling nodes also implement
the Node interface, as all four domain-specific node interfaces extend this interface. All nodes
may be explicitly destroyed, and all nodes may be queried as to whether they and their children
are fully constant. The DefaultBinaryOperatorNode class is the sole implementation of the
BinaryOperatorNode interface.

This example is interesting in that it is highly dependent on dynamic dispatch. An instance
of DefaultBinaryOperatorNode holds two operands, of which the only known fact is that

4This simplistic approach to constant folding will not necessarily work for all arithmetic expressions. The
expression x + 4 + 3 may be correctly represented as a binary operator node adding 3 to another binary
operator node, which adds x to 4, in other words (x + 4) + 3. Neither binary operator node is considered
constant in such a syntax tree, and thus no folding of constants will take place. This problem may be solved by
rearranging nodes in such a way that constant nodes (such as 4 and 3) are grouped together, while respecting
the rules governing the operators. As addition is an associative operator, (x + 4) + 3 can also be written as x
+ (4 + 3), which may be represented as a binary operator node adding x to another binary operator node,
which adds 4 to 3. The latter node is constant, and may be replaced with the literal operand node 7, yielding
the expression x + 7.

33

3. Demystifying dynamic dispatch

«enumeration»
UnaryOperator

NEGATION

«enumeration»
BinaryOperator

ADDITION
SUBTRACTION
MULTIPLICATION
DIVISION

DefaultIdentifierOperandNode DefaultLiteralOperandNodeDefaultUnaryOperatorNodeDefaultBinaryOperatorNode

«interface»
IdentifierOperandNode

+identifierCharacter(): String

«interface»
LiteralOperandNode

+constant(): Double

«interface»
UnaryOperatorNode

+operator(): UnaryOperator
+operand(): Node

«interface»
BinaryOperatorNode

+operator(): BinaryOperator
+leftOperand(): Node
+rightOperand(): Node

«interface»
Node

+destroy()
+isConstant(): Boolean

Figure 3.2 Diagram of an interface hierarchy for arithmetic nodes

they implement the Node interface. When Node::IsConstant() is called on an instance of
DefaultBinaryOperatorNode, it recursively calls this operation on its two operands, and
returns true if, and only if, both return true. It is unaware of the precise implementation
used by its operands, and must therefore find the implementation at runtime, bringing late
binding into play.

3.2.1 Introducing late binding

Late binding implies that the implementation of a type must be found at runtime. There are
a variety of means to achieve this goal—common to them all is that a data structure needs to
be queried at runtime to locate the desired implementation. A reference to this data structure
is stored as a (usually) hidden part of the instance data of an object, and is used behind the
scenes to locate the implementation.

Listing 3.4 presents a simple Perl script that demonstrates late binding (without object
semantics). The script accepts a command-line argument that must be either of the strings
“first” or “second,” and picks an implementation of the “Foo” operation based on this argument.
It achieves this by using a data structure in the form of a Perl associative array (a hash),
which maps keys to values, in this case strings to subroutines. As the data structure is used
to dispatch subroutine calls, it is called a dispatch table.

It would be possible, but inadvisable, to use the same solution in C—that is, a hash table
mapping operation names to function addresses. Using the names of operations—strings—is
inefficient and often not possible for native code (as the names are typically not available

34

3.2. A syntax tree representing an arithmetic expression in C

Listing 3.4 dispatch.pl
use s t r i c t ;

my %f i r s t_d i spa t ch_tab l e = (
foo_sub => sub { print "Foo operat ion , f i r s t d i spatch tab l e . \ n " } ,
bar_sub => sub { print " Bar operat ion , f i r s t d i spatch tab l e . \ n " }

) ;

my %second_dispatch_table = (
foo_sub => sub { print "Foo operat ion , second d i spatch tab l e . \ n " } ,
bar_sub => sub { print " Bar operat ion , second d i spatch tab l e . \ n " }

) ;

Retr i eve the de s i r ed implementat ion subrou t ine .
my $implementation_sub ;

i f (@ARGV == 1) {
i f ($ARGV[0] eq " f i r s t ") {

$implementation_sub = $ f i r s t_d i spa t ch_tab l e { foo_sub } ;
} e l s i f ($ARGV[0] eq " second ") {

$implementation_sub = $second_dispatch_table { foo_sub } ;
}

}

die " Cannot f i nd implementation . \ n " i f ! defined ($implementation_sub) ;

Dispatch the c a l l .
$implementation_sub−>();

at runtime). The standard solution is to use tables of procedural variables—structures of
function pointers, in C parlance—indexed into by indices that are known at compile-time.
Calling an operation using such a table is obviously not as efficient as eliminating dynamic
dispatch entirely (static dispatch), but more efficient than using more elaborate data structures,
such as the hash table used in Listing 3.4. This solution is very common, and is known by
many names, including virtual method table (VMT), virtual table (VT, VTBL), vtable, virtual
function table and dispatch table (the plethora of names containing the word “virtual” is due
to the use of dispatch tables to implement virtual operations in languages such as C++).

Listing 3.5 shows the C header file for the Node interface. The specification for the Node
dispatch table appears at the bottom as the Node_DispatchTable_t type, and declares two
function pointers consistent with Figure 3.2.5 The Node_t type stipulates that for a pointer
to be considered a reference to an object implementing the Node interface, the first member
of the memory area it points to must be a pointer to a dispatch table compatible with
Node_DispatchTable_t. The memory layout stipulated by these two types is an example of

5Calls to Node::Destroy(), and other destructors in this thesis, are guaranteed to succeed at all times.
Destructors that may fail are difficult to handle well, especially when called from other destructors (if a
destructor destroys some of its members before encountering a member destructor that fails, it is difficult to
recover).

35

3. Demystifying dynamic dispatch

Pointer to dispatch table Pointer to operation 1 impl.
Pointer to operation 2 impl.

Pointer to operation n impl.
...

...

Dispatch tableInterface node
Pointer to object

Client

...

...

Figure 3.3 Memory layout of interfaces of the custom object model

one part of the binary standard for the object model designed in this chapter.6 It is depicted
in Figure 3.3. The convenience macros Node_Destroy() and Node_IsConstant() help clients
make calls to objects implementing this interface.

Listing 3.5 Node.h
/∗∗

∗ @f i l e
∗
∗ This f i l e con ta ins an in t e r f a c e , <code>Node</code>, r ep r e s en t i n g an
∗ immutable node in a syntax t r e e . This t r e e r ep r e s en t s an ar i t hme t i c
∗ expre s s i on as produced by an operator−precedence parser . This
∗ i n t e r f a c e i s not meant to be implemented d i r e c t l y ; ra ther , i t
∗ s t i p u l a t e s what f u n c t i o n a l i t y a l l nodes in sa id t r e e are expec ted
∗ to prov ide . Descendant i n t e r f a c e s add opera t i ons s p e c i f i c to the
∗ type o f node they are modeling .
∗/

#ifndef INCLUSION_GUARD_NODE
#define INCLUSION_GUARD_NODE

#include <stdboo l . h>

// Convenience macros f o r the opera t i ons de f ined in t h i s i n t e r f a c e :

/∗∗
∗ Destroys t h i s node and i t s c h i l d r en (i f any) . This opera t ion always
∗ succeeds .
∗
∗ @param [in] pNode
∗ the in s tance implementing t h i s i n t e r f a c e . May be
∗ <code>NULL</code >.
∗/

#define Node_Destroy (pNode) \
i f ((pNode) != NULL) \
{ \

(pNode)−>pDispatchTable−>Destroy (pNode) ; \
}
6Having knowledge of the memory layout is necessary, but not sufficient, to make use of objects that

conform to this object model. See section 4.4.

36

3.2. A syntax tree representing an arithmetic expression in C

/∗∗
∗ Returns <code>true</code> i f t h i s node i s f u l l y cons tant and
∗ <code>f a l s e </code> otherw i s e .
∗
∗ @param [in] pNode
∗ the in s tance implementing t h i s i n t e r f a c e . Must not be
∗ <code>NULL</code >.
∗ @param [out] pResu l t
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the r e s u l t re turned by
∗ t h i s operat ion , t h a t i s , whether t h i s node i s cons tant . Must not
∗ be <code>NULL</code >.
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

#define Node_IsConstant (pNode , pResult) \
(pNode)−>pDispatchTable−>IsConstant ((pNode) , (pResult))

struct Node_DispatchTable_s ;

/∗∗
∗ Var iab l e s o f t h i s type may be used to r ep r e s en t o b j e c t s
∗ implementing t h i s i n t e r f a c e .
∗/

typedef struct
{

const struct Node_DispatchTable_s∗ pDispatchTable ;
} Node_t ;

/∗∗
∗ This i s the d i s pa t ch t a b l e , or v t a b l e , f o r t h i s i n t e r f a c e . I t
∗ r ep r e s en t s an i n d i r e c t i o n t ha t enab l e s the implementat ion o f an
∗ i n t e r f a c e to be bound to at runtime . I n t e r f a c e s wish ing to extend
∗ t h i s i n t e r f a c e must i nc l ude the complete con ten t s o f t h i s s t r u c t u r e
∗ as the f i r s t members o f t h e i r d i s pa t ch t a b l e s , changing the
∗ <code>Node_t</code> type to match t h e i r own . (Only s i n g l e i n t e r f a c e
∗ i n h e r i t anc e i s suppor ted .)
∗/

typedef struct Node_DispatchTable_s
{

// Operat ions de f ined in the Node i n t e r f a c e :
void (∗ Destroy) (Node_t∗ pNode) ;
bool (∗ IsConstant) (Node_t∗ pNode , bool ∗ pResult) ;

} Node_DispatchTable_t ;

#endif // INCLUSION_GUARD_NODE

Dispatch tables compatible with the Node interface must not necessarily be of the formal
compile-time type Node_DispatchTable_t, and a proper Node object reference must not
necessarily be of the type Node_t. They must, however, be binary compatible with these
types; in other words, regardless of the formal compile-time types of Node references and Node

37

3. Demystifying dynamic dispatch

dispatch tables, it must be possible to treat them as though they were of the types described
here. The upshot is that a dispatch table compatible with the Node_DispatchTable_t type
may include data following that specified by the aforementioned type, and ditto for object
references compatible with the Node_t type.

This aspect makes it straightforward for another interface to inherit from Node—its dispatch
table type must simply include all members of the Node_DispatchTable_t type before its own
members, changing the Node_t type to match its own type (which is binary compatible with
Node_t).7 Listing 3.6 shows the BinaryOperatorNode interface, which extends Node. (It is
dependent on the enumerated type BinaryOperator_t, whose members are shown in Figure 3.2
on page 34.) The BinaryOperatorNode_DispatchTable_t and BinaryOperatorNode_t types
are fully binary compatible with the Node_DispatchTable_t and Node_t types defined in
Listing 3.5.

Listing 3.6 BinaryOperatorNode.h
/∗∗

∗ @f i l e
∗
∗ This f i l e con ta ins an in t e r f a c e , <code>BinaryOperatorNode</code>,
∗ r ep r e s en t i n g a b inary opera tor node in a syntax t r e e . This t r e e
∗ r ep r e s en t s an ar i t hme t i c expre s s i on . A binary opera tor t a k e s two
∗ operands (in the expre s s i on "3 / x " , the d i v i s i o n opera tor opera t e s
∗ on the l i t e r a l operand "3" and the i d e n t i f i e r operand " x ") . This
∗ i n t e r f a c e ex tends <code>Node</code >.
∗/

#ifndef INCLUSION_GUARD_BINARY_OPERATOR_NODE
#define INCLUSION_GUARD_BINARY_OPERATOR_NODE

#include <stdboo l . h>
#include "Node . h "
#include " BinaryOperator . h "

/∗ Convenience macros f o r the opera t i ons i n h e r i t e d from the Node
∗ i n t e r f a c e :
∗/

#define BinaryOperatorNode_Destroy (pBinaryOperatorNode) \
i f ((pBinaryOperatorNode) != NULL) \
{ \

(pBinaryOperatorNode)−>pDispatchTable−>Destroy (pBinaryOperatorNode) ; \
}

#define BinaryOperatorNode_IsConstant (pBinaryOperatorNode , pResult) \
(pBinaryOperatorNode)−>pDispatchTable−>IsConstant (\

(pBinaryOperatorNode) , (pResult))

// Convenience macros f o r the opera t i ons de f ined in t h i s i n t e r f a c e :

/∗∗
∗ Returns the b inary opera tor o f t h i s node .
∗

7This approach only works when extending a single interface, known as single interface inheritance.
Extending multiple interfaces is discussed in Chapter 4.

38

3.2. A syntax tree representing an arithmetic expression in C

∗ @param [in] pBinaryOperatorNode
∗ the in s tance implementing t h i s i n t e r f a c e . Must not be
∗ <code>NULL</code >.
∗ @param [out] pResu l t
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the r e s u l t re turned by
∗ t h i s operat ion , t h a t i s , the b inary opera tor o f t h i s node .
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

#define BinaryOperatorNode_Operator (pBinaryOperatorNode , pResult) \
(pBinaryOperatorNode)−>pDispatchTable−>Operator ((pBinaryOperatorNode) ,\

(pResult))

/∗∗
∗ Returns the l e f t operand o f t h i s node .
∗
∗ @param [in] pBinaryOperatorNode
∗ the in s tance implementing t h i s i n t e r f a c e . Must not be
∗ <code>NULL</code >.
∗ @param [out] ppResu l t
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the r e s u l t re turned by
∗ t h i s operat ion , t h a t i s , the l e f t operand o f t h i s node .
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

#define BinaryOperatorNode_LeftOperand (pBinaryOperatorNode , ppResult) \
(pBinaryOperatorNode)−>pDispatchTable−>LeftOperand (\

(pBinaryOperatorNode) , \
(ppResult))

/∗∗
∗ Returns the r i g h t operand o f t h i s node .
∗
∗ @param [in] pBinaryOperatorNode
∗ the in s tance implementing t h i s i n t e r f a c e . Must not be
∗ <code>NULL</code >.
∗ @param [out] ppResu l t
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the r e s u l t re turned by
∗ t h i s operat ion , t h a t i s , the r i g h t operand o f t h i s node .
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

#define BinaryOperatorNode_RightOperand (pBinaryOperatorNode , ppResult) \
(pBinaryOperatorNode)−>pDispatchTable−>RightOperand (\

(pBinaryOperatorNode) , \
(ppResult))

struct BinaryOperatorNode_DispatchTable_s ;

39

3. Demystifying dynamic dispatch

/∗∗
∗ Var iab l e s o f t h i s type may be used to r ep r e s en t o b j e c t s
∗ implementing t h i s i n t e r f a c e .
∗/

typedef struct
{

const struct BinaryOperatorNode_DispatchTable_s∗ pDispatchTable ;
} BinaryOperatorNode_t ;

/∗∗
∗ This i s the d i s pa t ch t a b l e , or v t a b l e , f o r t h i s i n t e r f a c e . I t
∗ r ep r e s en t s an i n d i r e c t i o n t ha t enab l e s the implementat ion o f an
∗ i n t e r f a c e to be bound to at runtime . I n t e r f a c e s wish ing to extend
∗ t h i s i n t e r f a c e must i nc l ude the complete con ten t s o f t h i s s t r u c t u r e
∗ as the f i r s t members o f t h e i r d i s pa t ch t a b l e s , changing the
∗ <code>BinaryOperatorNode_t</code> type to match t h e i r own . (Only
∗ s i n g l e i n t e r f a c e i nhe r i t anc e i s supported .)
∗/

typedef struct BinaryOperatorNode_DispatchTable_s
{

// Operat ions i n h e r i t e d from the Node i n t e r f a c e :
void (∗ Destroy) (BinaryOperatorNode_t∗ pBinaryOperatorNode) ;
bool (∗ IsConstant) (BinaryOperatorNode_t∗ pBinaryOperatorNode ,

bool ∗ pResult) ;

// Operat ions de f ined in the BinaryOperatorNode i n t e r f a c e :
bool (∗ Operator) (BinaryOperatorNode_t∗ pBinaryOperatorNode ,

BinaryOperator_t∗ pResult) ;
bool (∗ LeftOperand) (BinaryOperatorNode_t∗ pBinaryOperatorNode ,

Node_t∗∗ ppResult) ;
bool (∗RightOperand) (BinaryOperatorNode_t∗ pBinaryOperatorNode ,

Node_t∗∗ ppResult) ;
} BinaryOperatorNode_DispatchTable_t ;

#endif // INCLUSION_GUARD_BINARY_OPERATOR_NODE

Writing a class that implements the BinaryOperatorNode interface (and thus also the
Node interface) entails complying with the binary standard of this interface, in the form of
the BinaryOperatorNode_DispatchTable_t and BinaryOperatorNode_t types. A pointer
to an instance of such a class must be binary compatible with the latter type, and its
pDispatchTable member must be binary compatible with the former type.

DefaultBinaryOperatorNode is such a class. All its operations are virtual, except its
constructor (constructors are always bound to statically, as clients are always aware of the
identities of the classes they instantiate). Its header file appears as Listing 3.7 and its imple-
mentation as Listing 3.8. Figure 3.4 depicts the instance data of DefaultBinaryOperatorNode
objects, which are fully compatible with the binary standard shown in Figure 3.3 on page 36.
The contents of the white areas in the figure are dictated by the binary interface standard—the
first member of the memory representing an object must be a pointer to a dispatch table, the
layout of which is fixed—whereas the shaded areas may contain any data that is convenient
for the implementation. This latter space is used for the instance data.

40

3.2. A syntax tree representing an arithmetic expression in C

Pointer to BinaryOperatorNode dispatch table
DefaultBinaryOperatorNode instance data

Operator
Pointer to left operand
Pointer to right operand

...

...

BinaryOperatorNode dispatch table

Pointer to IsConstant impl.

Pointer to RightOperand impl.
Pointer to LeftOperand impl.
Pointer to Operator impl.

...

...

...

...

Pointer to Destroy implementation ...

Figure 3.4 Instance data of DefaultBinaryOperatorNode objects

Listing 3.7 DefaultBinaryOperatorNode.h
/∗∗

∗ @f i l e
∗
∗ This f i l e con ta ins func t i on pro to t ype s f o r the c l a s s opera t i ons
∗ (s t a t i c opera t i ons) o f the <code>DefaultBinaryOperatorNode</code>
∗ c l a s s .
∗/

#ifndef INCLUSION_GUARD_DEFAULT_BINARY_OPERATOR_NODE
#define INCLUSION_GUARD_DEFAULT_BINARY_OPERATOR_NODE

#include <stdboo l . h>
#include "Node . h "
#include " BinaryOperatorNode . h "
#include " BinaryOperator . h "

/∗∗
∗ Creates an ins tance o f the <code>DefaultBinaryOperatorNode</code>
∗ c l a s s .
∗
∗ @param [in] opera tor
∗ the b inary opera tor o f t h i s node .
∗ @param [in] pLeftOperand
∗ the l e f t operand o f t h i s node . Must not be <code>NULL</code >.
∗ @param [in] pRightOperand
∗ the r i g h t operand o f t h i s node . Must not be <code>NULL</code >.
∗ @param [out] ppResu l t
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the in s tance o f t h i s
∗ c l a s s . Must not be <code>NULL</code >.
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

bool DefaultBinaryOperatorNode_Create (BinaryOperator_t operator ,
Node_t∗ pLeftOperand ,
Node_t∗ pRightOperand ,
BinaryOperatorNode_t∗∗ ppResult) ;

41

3. Demystifying dynamic dispatch

#endif // INCLUSION_GUARD_DEFAULT_BINARY_OPERATOR_NODE

Listing 3.8 DefaultBinaryOperatorNode.c
/∗∗

∗ @f i l e
∗
∗ This f i l e con ta ins a c l a s s , <code>DefaultBinaryOperatorNode</code>,
∗ which i s the d e f a u l t implementat ion o f the
∗ <code>BinaryOperatorNode</code> i n t e r f a c e .
∗/

#include <stdboo l . h>
#include <s t d l i b . h>
#include <stdarg . h>
#include "Node . h "
#include " BinaryOperatorNode . h "
#include " BinaryOperator . h "
#include " DefaultBinaryOperatorNode . h "

/∗∗
∗ This s t r u c t u r e r ep r e s en t s the in s tance data o f
∗ <code>DefaultBinaryOperatorNode</code> ob j e c t s .
∗/

typedef struct
{

/∗∗
∗ The d i s pa t ch t a b l e used by t h i s in s tance .
∗/

const BinaryOperatorNode_DispatchTable_t∗ pDispatchTable ;

/∗∗
∗ The b inary opera tor used by t h i s o b j e c t .
∗/

BinaryOperator_t operator ;

/∗∗
∗ The node r ep r e s en t i n g the l e f t operand . This member i s never
∗ <code>NULL</code >.
∗/

Node_t∗ pLeftOperand ;

/∗∗
∗ The node r ep r e s en t i n g the r i g h t operand . This member i s never
∗ <code>NULL</code >.
∗/

Node_t∗ pRightOperand ;
} DefaultBinaryOperatorNode_InstanceData_t ;

stat ic const BinaryOperatorNode_DispatchTable_t
gBinaryOperatorNodeDispatchTable ;

42

3.2. A syntax tree representing an arithmetic expression in C

bool DefaultBinaryOperatorNode_Create (BinaryOperator_t operator ,
Node_t∗ pLeftOperand ,
Node_t∗ pRightOperand ,
BinaryOperatorNode_t∗∗ ppResult)

{
DefaultBinaryOperatorNode_InstanceData_t∗ pInstanceData = NULL;

bool r e s u l t =
(pLeftOperand != NULL) &&
(pRightOperand != NULL) &&
(ppResult != NULL) ;

i f (r e s u l t)
{

pInstanceData =
mal loc (s izeof (DefaultBinaryOperatorNode_InstanceData_t)) ;

r e s u l t = pInstanceData != NULL;
}

i f (r e s u l t)
{

pInstanceData−>pDispatchTable = &gBinaryOperatorNodeDispatchTable ;
pInstanceData−>operator = operator ;
pInstanceData−>pLeftOperand = pLeftOperand ;
pInstanceData−>pRightOperand = pRightOperand ;
∗ppResult = (BinaryOperatorNode_t ∗) pInstanceData ;

}
else i f (ppResult != NULL)
{

∗ppResult = NULL;
}

return r e s u l t ;
}

stat ic void DefaultBinaryOperatorNode_Destroy (
BinaryOperatorNode_t∗ pBinaryOperatorNode)

{
i f (pBinaryOperatorNode != NULL)
{

DefaultBinaryOperatorNode_InstanceData_t∗ pThis =
(DefaultBinaryOperatorNode_InstanceData_t ∗) pBinaryOperatorNode ;

Node_Destroy (pThis−>pLeftOperand) ;
Node_Destroy (pThis−>pRightOperand) ;

f r e e (pBinaryOperatorNode) ;
}

}

stat ic bool DefaultBinaryOperatorNode_IsConstant (
BinaryOperatorNode_t∗ pBinaryOperatorNode , bool ∗ pResult)

{

43

3. Demystifying dynamic dispatch

bool r e s u l t = (pBinaryOperatorNode != NULL) && (pResult != NULL) ;
DefaultBinaryOperatorNode_InstanceData_t∗ pThis =

(DefaultBinaryOperatorNode_InstanceData_t ∗) pBinaryOperatorNode ;
bool isLeftOperandConstant = f a l s e ;
bool isRightOperandConstant = f a l s e ;

i f (r e s u l t)
{

r e s u l t = Node_IsConstant (pThis−>pLeftOperand ,
&isLeftOperandConstant) ;

}

i f (r e s u l t)
{

r e s u l t = Node_IsConstant (pThis−>pRightOperand ,
&isRightOperandConstant) ;

}

i f (r e s u l t)
{

∗pResult = isLeftOperandConstant && isRightOperandConstant ;
}
else i f (pResult != NULL)
{

∗pResult = f a l s e ;
}

return r e s u l t ;
}

stat ic bool DefaultBinaryOperatorNode_Operator (
BinaryOperatorNode_t∗ pBinaryOperatorNode ,
BinaryOperator_t∗ pResult)

{
bool r e s u l t = (pBinaryOperatorNode != NULL) && (pResult != NULL) ;
DefaultBinaryOperatorNode_InstanceData_t∗ pThis =

(DefaultBinaryOperatorNode_InstanceData_t ∗) pBinaryOperatorNode ;

i f (r e s u l t)
{

∗pResult = pThis−>operator ;
}
else i f (pResult != NULL)
{

∗pResult = BinaryOperator_UNDEFINED ;
}

return r e s u l t ;
}

stat ic bool DefaultBinaryOperatorNode_LeftOperand (
BinaryOperatorNode_t∗ pBinaryOperatorNode ,
Node_t∗∗ ppResult)

44

3.2. A syntax tree representing an arithmetic expression in C

{
bool r e s u l t = (pBinaryOperatorNode != NULL) && (ppResult != NULL) ;
DefaultBinaryOperatorNode_InstanceData_t∗ pThis =

(DefaultBinaryOperatorNode_InstanceData_t ∗) pBinaryOperatorNode ;

i f (r e s u l t)
{

∗ppResult = pThis−>pLeftOperand ;
}
else i f (ppResult != NULL)
{

∗ppResult = NULL;
}

return r e s u l t ;
}

stat ic bool DefaultBinaryOperatorNode_RightOperand (
BinaryOperatorNode_t∗ pBinaryOperatorNode ,
Node_t∗∗ ppResult)

{
bool r e s u l t = (pBinaryOperatorNode != NULL) && (ppResult != NULL) ;
DefaultBinaryOperatorNode_InstanceData_t∗ pThis =

(DefaultBinaryOperatorNode_InstanceData_t ∗) pBinaryOperatorNode ;

i f (r e s u l t)
{

∗ppResult = pThis−>pRightOperand ;
}
else i f (ppResult != NULL)
{

∗ppResult = NULL;
}

return r e s u l t ;
}

/∗∗
∗ This i s the d i s pa t ch t a b l e f o r the <code>BinaryOperatorNode</code>
∗ i n t e r f a c e implemented by t h i s c l a s s .
∗/
stat ic const BinaryOperatorNode_DispatchTable_t

gBinaryOperatorNodeDispatchTable =
{

DefaultBinaryOperatorNode_Destroy ,
DefaultBinaryOperatorNode_IsConstant ,
DefaultBinaryOperatorNode_Operator ,
DefaultBinaryOperatorNode_LeftOperand ,
DefaultBinaryOperatorNode_RightOperand

} ;

The DefaultBinaryOperatorNode_InstanceData_t type on page 42 represents the in-
stance data of DefaultBinaryOperatorNode objects. The first member is a pointer to the

45

3. Demystifying dynamic dispatch

dispatch table, in accordance with the BinaryOperatorNode_t type on page 40. The members
declared after the pointer to the dispatch table are used for the actual instance data.

All instances of a certain class use the same dispatch table, as the only thing that
varies between objects of the same class is their state. The behavior of different objects
of the same class differs only insofar as they have different state, as they use the same
implementation. As such, the dispatch table is statically allocated as the constant structure
gBinaryOperatorNodeDispatchTable at the end of Listing 3.8 on the previous page. All
instances of a class point to the same global dispatch table. While the formal compile-time
type of this variable is BinaryOperatorNode_DispatchTable_t, it is binary compatible with
Node_DispatchTable_t as well.

Except for the constructor, all functions are declared static, and as a result their symbol
names are not available outside the compilation unit in which they are defined. They are,
however, still accessible to other compilation units as their addresses are stored in the dispatch
table. Essentially, this approach subverts the standard means that C provides for calling
external functions (external linkage), enabling the implementation of dispatch in an object-
oriented fashion.

All operations accept a pointer to a variable of the BinaryOperatorNode_t type. This
variable needs to be typecast to the DefaultBinaryOperatorNode_InstanceData_t type in
order to access the instance data (predictably, the local variable used to access the instance
data is called pThis).

This example program essentially implements a complete, if simple, object model through
the conventions it adopts. There is room for improvement, though, which is the topic for
Chapter 4.

46

CHAPTER 4
Refining the object model

The object model presented in Chapter 3 successfully realizes classes, interfaces, encapsulation,
polymorphism and single interface inheritance. However, classes may only directly implement
one single interface. This is limiting from a modeling perspective—an object should be able to
signal that it is both “observable” and “printable,” for instance. If a class is allowed to directly
implement multiple interfaces, though, there must be a way for clients to query an object
as to whether it supports a given interface, and if so, for a reference through this interface
(known as interface navigation).

The Node interface in Chapter 3 stipulates that explicit memory management should be
used to manage the lifetime of instances implementing this interface and its descendants. This
strategy is inadequate in a setting involving many independent parties. If a reference to an
object implementing the Node interface is passed to an external party, there is no way of
knowing if this party wishes to hold onto the reference past the lifetime of the call (it could store
it as part of its instance data). As a result, it is impossible to know when it is safe to destroy
the object. Reference counting can be used to solve this problem, as described in section 2.2.5.1

This chapter aims to rectify these deficiencies, by introducing support for interface naviga-
tion and reference counting to the DefaultBinaryOperatorNode class presented in Chapter 3.
To this end, a root interface, Fundamental, is introduced in this chapter that all interfaces
must extend.

Using the DefaultBinaryOperatorNode class through the BinaryOperatorNode interface
requires compile-time knowledge of this interface. The validity of such invocations are checked
against the function prototypes contained in the dispatch table of BinaryOperatorNode. As
noted in section 2.2.4, not all clients that wish to communicate with an object necessarily
have compile-time knowledge of the interfaces it implements, notably scripts interpreted or
compiled at runtime, which may not even have been written at the time the script host was
compiled. Very late binding entails making it possible to check the validity of operation
invocations at runtime, by making the metadata previously only available at compile-time
also available at runtime, and thus deploying it to end-users’ systems (this data is sometimes
known as runtime type information). This chapter adds support for very late binding to
the DefaultBinaryOperatorNode class, by having it implement a new interface, Scriptable,
which provides an operation that facilitates very late binding.

1The problem with cyclic references would be provoked by adding a parent node reference to every node.

47

4. Refining the object model

4.1 Instituting a root interface
The new root interface, Fundamental, features three operations that facilitate interface
navigation and reference counting. As all interfaces must directly or indirectly descend from
this interface, all objects gain these new abilities. The revised interface hierarchy is shown
in Figure 4.1. (The Destroy() operation has been removed from the Node interface in favor
of the reference counting operations inherited from the root interface, and a new operation,
PrintDebugInformation(), has been added to aid debugging.)

Listing 4.1 presents the C header file for the new base interface, along with documentation
for the new mandatory operations. Figure 4.2 visually depicts the revised memory layout and
its requirement that the first three members of all dispatch tables correspond to the three
operations of the Fundamental interface.

Listing 4.1 Fundamental.h
/∗∗

∗ @f i l e
∗
∗ This f i l e con ta ins the i n t e r f a c e <code>Fundamental</code>, which
∗ a l l i n t e r f a c e s u l t ima t e l y descend from . I t con ta ins opera t i ons t ha t
∗ f a c i l i t a t e i n t e r f a c e nav i ga t i on and re f e r ence count ing .
∗/

#ifndef INCLUSION_GUARD_FUNDAMENTAL
#define INCLUSION_GUARD_FUNDAMENTAL

#include <stdboo l . h>
#include <wchar . h>

/∗∗
∗ The name o f t h i s i n t e r f a c e .
∗/

#define FUNDAMENTAL_NAME (L" se . po lbe rge r . components . Fundamental ")

/∗∗
∗ Returns a r e f e r ence to the under l y ing in s tance through a d i f f e r e n t
∗ i n t e r f a c e . <code >:: AddReference ()</code> i s c a l l e d au t oma t i c a l l y on
∗ the new re f e r ence . I f the c l a s s does not suppor t the g iven
∗ i n t e r f a c e , t h i s opera t ion f a i l s .
∗
∗ @param [in] pFundamental
∗ the in s tance implementing t h i s i n t e r f a c e . Must not be
∗ <code>NULL</code >.
∗ @param [in] pInterfaceName
∗ the name o f the i n t e r f a c e . I f t h i s i n t e r f a c e i s not implemented
∗ by the under l y ing ins tance , t h i s opera t ion f a i l s . Must not be
∗ <code>NULL</code >.
∗ @param [out] ppResu l t
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the r e s u l t re turned by
∗ t h i s operat ion , t h a t i s , an i n t e r f a c e r e f e r ence . This parameter
∗ may be <code>NULL</code>, in which case t h i s opera t ion may be
∗ used to query an o b j e c t as to whether i t suppor t s a g iven
∗ i n t e r f a c e , wi th no concern f o r a r e s u l t i n t e r f a c e .

48

4.1. Instituting a root interface

«enumeration»
UnaryOperator

NEGATION

«enumeration»
BinaryOperator

ADDITION
SUBTRACTION
MULTIPLICATION
DIVISION

DefaultIdentifierOperandNode DefaultLiteralOperandNodeDefaultUnaryOperatorNodeDefaultBinaryOperatorNode

«interface»
IdentifierOperandNode

+identifierCharacter(): String

«interface»
UnaryOperatorNode

+operator(): UnaryOperator
+operand(): Node

«interface»
BinaryOperatorNode

+operator(): BinaryOperator
+leftOperand(): Node
+rightOperand(): Node

«interface»
Fundamental

+switchInterface(interfaceName: String): Fundamental
+addReference()
+removeReference()

«interface»
Scriptable

+invokeOperation(operationName: String,
returnValue: ScriptableReturnValue,
arguments: ScriptableArgumentList)

«interface»
Node

+printDebugInformation(startPosition: Integer,
+isConstant(): Boolean

indentationSize: Integer)

«interface»
LiteralOperandNode

+constant(): Double

Figure 4.1 Revised diagram of an interface hierarchy for arithmetic nodes

Pointer to dispatch table Pointer to SwitchInterface impl.

Pointer to operation n impl.

Pointer to operation 4 impl.
Pointer to RemoveReference impl.
Pointer to AddReference impl.

...

...

...

...

...

...

Dispatch tableInterface node
Pointer to object

Client

Figure 4.2 Revised memory layout of interfaces of the custom object model

49

4. Refining the object model

∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

#define Fundamental_SwitchInterface (pFundamental , \
pInterfaceName , \
ppResult) \

(pFundamental)−>pDispatchTable−>Swi t ch In t e r f a c e ((pFundamental) , \
(pInterfaceName) , \
(ppResult)) ;

/∗∗
∗ No t i f i e s the in s tance implementing t h i s i n t e r f a c e t ha t a new
∗ r e f e r ence has been added . This c a l l a lways succeeds (thus t he r e i s
∗ no re turn va lue) .
∗
∗ @param [in] pFundamental
∗ the in s tance implementing t h i s i n t e r f a c e . May be
∗ <code>NULL</code >.
∗/

#define Fundamental_AddReference (pFundamental) \
i f ((pFundamental) != NULL) \
{ \

(pFundamental)−>pDispatchTable−>AddReference (pFundamental) ; \
}

/∗∗
∗ No t i f i e s the in s tance implementing t h i s i n t e r f a c e t ha t a p r e v i o u s l y
∗ added r e f e r ence has been removed . I f t h i s in s tance f i n d s t ha t t he r e
∗ are no l i v e r e f e r enc e s to i t , i t au t oma t i c a l l y d e s t r oy s
∗ i t s e l f . This c a l l a lways succeeds (thus t he r e i s no re turn va lue) .
∗
∗ @param [in] pFundamental
∗ the in s tance implementing t h i s i n t e r f a c e . May be
∗ <code>NULL</code >.
∗/

#define Fundamental_RemoveReference (pFundamental) \
i f ((pFundamental) != NULL) \
{ \

(pFundamental)−>pDispatchTable−>RemoveReference (pFundamental) ; \
}

struct Fundamental_DispatchTable_s ;

/∗∗
∗ Var iab l e s o f t h i s type may be used to r ep r e s en t o b j e c t s
∗ implementing t h i s i n t e r f a c e .
∗/

typedef struct
{

const struct Fundamental_DispatchTable_s∗ pDispatchTable ;
} Fundamental_t ;

50

4.1. Instituting a root interface

/∗∗
∗ This i s the d i s pa t ch t a b l e , or v t a b l e , f o r t h i s i n t e r f a c e . I t
∗ r ep r e s en t s an i n d i r e c t i o n t ha t enab l e s the implementat ion o f an
∗ i n t e r f a c e to be bound to at runtime . I n t e r f a c e s wish ing to extend
∗ t h i s i n t e r f a c e must i nc l ude the complete con ten t s o f t h i s s t r u c t u r e
∗ as the f i r s t members o f t h e i r d i s pa t ch t a b l e s , changing the
∗ <code>Fundamental_t</code> type to match t h e i r own . (Only s i n g l e
∗ i n t e r f a c e i nhe r i t anc e i s supported .)
∗/

typedef struct Fundamental_DispatchTable_s
{

bool (∗ Sw i t ch In t e r f a c e) (Fundamental_t∗ pFundamental ,
wchar_t∗ pInterfaceName ,
Fundamental_t∗∗ ppResult) ;

void (∗AddReference) (Fundamental_t∗ pFundamental) ;
void (∗RemoveReference) (Fundamental_t∗ pFundamental) ;

} Fundamental_DispatchTable_t ;

#endif // INCLUSION_GUARD_FUNDAMENTAL

Fundamental::SwitchInterface() enables clients that hold a reference to an object
through a certain interface to switch to another interface that the object implements (or,
alternatively, to simply query an object as to whether it supports a given interface). To
facilitate this, it must be possible to refer to an interface at runtime. In other words, every
interface must have a runtime-accessible name. Elaborate means have been devised for
component models in industry to give interfaces and other such entities runtime names. For
simplicity, this example uses a simple text string, which is understood to have been crafted in
such a way that the name has a high probability of being unique. All interfaces used here
use the simple, but very effective, method of using Internet top-level domain names as part
of the name, thus delegating the responsibility for ensuring the uniqueness of the names to
third-party naming authorities (domain name registrars). This is also the approach taken
by the Java programming language and platform. The name of the Fundamental interface is
given as the contents of the FUNDAMENTAL_NAME macro on page 48.

Fundamental::AddReference() and Fundamental::RemoveReference(), which realize
the reference counting scheme used by this object model, are called when a reference is added
to an object, and when a reference is removed, respectively. A newly-created object assumes
that at least one client holds a reference to it.

Using the reference counting operations properly can be error-prone. An object may be
passed as an input argument to another operation without adding a reference, but if one is
returned to a caller using an output argument, one must be added. Also, if an object reference
is saved to a part of the system memory that is outside the call stack (a global variable or
the heap), a reference also needs to be added. If these rules are not obeyed, objects may be
unexpectedly destroyed, or may continue to consume memory despite no longer being needed.

A class implementing multiple interfaces may want to either provide one constructor per sup-
ported interface, or one universal constructor that accepts the name of the desired interface as
an argument. If the latter path is taken, the constructor should return a Fundamental instance
that the client is expected to typecast to the proper type. DefaultBinaryOperatorNode uses
this approach; the new function prototype and its documentation can be seen in Listing 4.2.

51

4. Refining the object model

Listing 4.2 Excerpt from a revised version of DefaultBinaryOperatorNode.h
/∗∗

∗ Creates an ins tance o f the <code>DefaultBinaryOperatorNode</code>
∗ c l a s s .
∗
∗ @param [in] opera tor
∗ the b inary opera tor o f t h i s node .
∗ @param [in] pLeftOperand
∗ the l e f t operand o f t h i s node . Must not be <code>NULL</code >.
∗ @param [in] pRightOperand
∗ the r i g h t operand o f t h i s node . Must not be <code>NULL</code >.
∗ @param [in] pInterfaceName
∗ the name o f the i n t e r f a c e t ha t the r e f e r ence shou ld be re turned
∗ through . Must not be <code>NULL</code >.
∗ @param [out] ppResu l t
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the in s tance o f t h i s
∗ c l a s s . Must not be <code>NULL</code >.
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

bool DefaultBinaryOperatorNode_Create (BinaryOperator_t operator ,
Node_t∗ pLeftOperand ,
Node_t∗ pRightOperand ,
wchar_t∗ pInterfaceName ,
Fundamental_t∗∗ ppResult) ;

Apart from requiring all interfaces to directly or indirectly descend from Fundamental, the
nature of the binary standard has not changed since Chapter 3 to support classes implementing
multiple unrelated interfaces. This can be seen in Listing 4.1: The Fundamental_t and
Fundamental_DispatchTable_t types follow the conventions set forth in Chapter 3. Thus,
the onus is fully on the implementation of the classes themselves to realize this support.

An excerpt from the revised implementation of DefaultBinaryOperatorNode is shown
in Listing 4.3. To illustrate the new support for implementing multiple interfaces, this class
now also implements the Scriptable interface, which descends directly from Fundamental.
(Scriptable makes it possible to call an object without having compile-time knowledge of
the interfaces it implements, and is described more fully in section 4.2.)

Listing 4.3 Excerpt 1 from a revised version of DefaultBinaryOperatorNode.c
struct DefaultBinaryOperatorNode_InstanceData_s ;

/∗∗
∗ This s t r u c t u r e r ep r e s en t s an i n t e r f a c e node , which enab l e s acces s
∗ to in s t ance s o f the c l a s s conta ined in t h i s f i l e .
∗/

typedef struct
{

/∗∗
∗ The d i s pa t ch t a b l e , or v t a b l e . The type i s not s p e c i f i e d , as t h i s

52

4.1. Instituting a root interface

∗ s t r u c t u r e i s not used to acces s the d i s pa t ch t a b l e (whose type
∗ may vary) , but to acces s the in s tance data .
∗/

const void∗ pDispatchTable ;

/∗∗
∗ The ins tance data .
∗/
struct DefaultBinaryOperatorNode_InstanceData_s∗ pInstanceData ;

} DefaultBinaryOperatorNode_InterfaceNode_t ;

/∗∗
∗ This s t r u c t u r e r ep r e s en t s the in s tance data o f
∗ <code>DefaultBinaryOperatorNode</code> ob j e c t s .
∗/

typedef struct DefaultBinaryOperatorNode_InstanceData_s
{

/∗∗
∗ The i n t e r f a c e node t ha t makes i t p o s s i b l e to acces s t h i s in s tance
∗ through the <code>BinaryOperatorNode</code> i n t e r f a c e (and a l l
∗ i n t e r f a c e s t ha t t h i s i n t e r f a c e descends from) .
∗/

DefaultBinaryOperatorNode_InterfaceNode_t
interfaceNodeBinaryOperatorNode ;

/∗∗
∗ The i n t e r f a c e node t ha t makes i t p o s s i b l e to acces s t h i s in s tance
∗ through the <code>Sc r i p t a b l e </code> i n t e r f a c e (and a l l i n t e r f a c e s
∗ t h a t t h i s i n t e r f a c e descends from) .
∗/

DefaultBinaryOperatorNode_InterfaceNode_t in t e r f a c eNodeSc r i p t ab l e ;

/∗∗
∗ The re f e r ence count o f t h i s in s tance . When t h i s drops to zero ,
∗ the in s tance i s au t oma t i c a l l y de s t royed .
∗/

unsigned int re f e renceCount ;

/∗∗
∗ The b inary opera tor used by t h i s o b j e c t .
∗/

BinaryOperator_t operator ;

/∗∗
∗ The node r ep r e s en t i n g the l e f t operand . This member i s never
∗ <code>NULL</code >.
∗/

Node_t∗ pLeftOperand ;

/∗∗
∗ The node r ep r e s en t i n g the r i g h t operand . This member i s never
∗ <code>NULL</code >.
∗/

53

4. Refining the object model

Node_t∗ pRightOperand ;
} DefaultBinaryOperatorNode_InstanceData_t ;

stat ic const BinaryOperatorNode_DispatchTable_t
gBinaryOperatorNodeDispatchTable ;

stat ic const Scriptable_DispatchTable_t gScr iptab l eDi spatchTab le ;

bool DefaultBinaryOperatorNode_Create (BinaryOperator_t operator ,
Node_t∗ pLeftOperand ,
Node_t∗ pRightOperand ,
wchar_t∗ pInterfaceName ,
Fundamental_t∗∗ ppResult)

{
DefaultBinaryOperatorNode_InstanceData_t∗ pInstanceData = NULL;

bool r e s u l t =
(pLeftOperand != NULL) &&
(pRightOperand != NULL) &&
(pInterfaceName != NULL) &&
(ppResult != NULL) ;

i f (r e s u l t)
{

pInstanceData =
mal loc (s izeof (DefaultBinaryOperatorNode_InstanceData_t)) ;

r e s u l t = pInstanceData != NULL;
}

i f (r e s u l t)
{

pInstanceData−>interfaceNodeBinaryOperatorNode . pDispatchTable =
&gBinaryOperatorNodeDispatchTable ;

pInstanceData−>interfaceNodeBinaryOperatorNode . pInstanceData =
pInstanceData ;

pInstanceData−>in t e r f a c eNodeSc r i p t ab l e . pDispatchTable =
&gScr iptab leDi spatchTab le ;

pInstanceData−>in t e r f a c eNodeSc r i p t ab l e . pInstanceData =
pInstanceData ;

pInstanceData−>referenceCount = 1 ;
pInstanceData−>operator = operator ;

/∗ We are about to make cop i e s o f the operand nodes passed to t h i s
∗ cons t ruc t o r t ha t we w i l l keep as par t o f our in s tance data . As
∗ a r e s u l t , we need to add r e f e r enc e s to them .
∗/

Node_AddReference (pLeftOperand) ;
pInstanceData−>pLeftOperand = pLeftOperand ;
Node_AddReference (pRightOperand) ;
pInstanceData−>pRightOperand = pRightOperand ;

/∗ Switch to the de s i r ed i n t e r f a c e . This opera t ion au t oma t i c a l l y

54

4.1. Instituting a root interface

∗ adds a r e f e r ence to the r e f e r ence i t r e tu rns .
∗/
r e s u l t = Fundamental_SwitchInterface (

(Fundamental_t∗)&(pInstanceData−>interfaceNodeBinaryOperatorNode) ,
pInterfaceName ,
ppResult) ;

}
else i f (ppResult != NULL)
{

∗ppResult = NULL;
}

/∗ Regard l e s s o f whether we have f a i l e d or succeeded in sw i t ch ing to
∗ the de s i r ed i n t e r f a c e , we need to remove the r e f e r ence t h i s
∗ cons t ruc t o r has added to the in s tance (imp l i c i t l y , by s e t t i n g the
∗ r e f e r ence count to 1) .
∗/
i f (pInstanceData != NULL)
{

Fundamental_RemoveReference (
(Fundamental_t∗)&(pInstanceData−>interfaceNodeBinaryOperatorNode)) ;

}

return r e s u l t ;
}

stat ic bool DefaultBinaryOperatorNode_SwitchInter face (
DefaultBinaryOperatorNode_InterfaceNode_t ∗ pInter faceNode ,
wchar_t∗ pInterfaceName ,
Fundamental_t∗∗ ppResult)

{
bool r e s u l t = (pInter faceNode != NULL) && (pInterfaceName != NULL) ;
DefaultBinaryOperatorNode_InstanceData_t∗ pThis =

pInter faceNode−>pInstanceData ;

i f (r e s u l t)
{

i f ((wcscmp(pInterfaceName , FUNDAMENTAL_NAME) == 0) | |
(wcscmp(pInterfaceName , NODE_NAME) == 0) | |
(wcscmp(pInterfaceName , BINARY_OPERATOR_NODE_NAME) == 0))

{
i f (ppResult != NULL)
{

∗ppResult =
(Fundamental_t∗)&(pThis−>interfaceNodeBinaryOperatorNode) ;

}
}
else i f (wcscmp(pInterfaceName , SCRIPTABLE_NAME) == 0)
{

i f (ppResult != NULL)
{

∗ppResult = (Fundamental_t∗)&(pThis−>in t e r f a c eNodeSc r i p t ab l e) ;
}

55

4. Refining the object model

}
else
{

r e s u l t = f a l s e ;
}

}

i f (ppResult != NULL)
{

i f (r e s u l t)
{

Fundamental_AddReference (∗ ppResult) ;
}
else
{

∗ppResult = NULL;
}

}

return r e s u l t ;
}

stat ic void DefaultBinaryOperatorNode_AddReference (
DefaultBinaryOperatorNode_InterfaceNode_t ∗ pInter faceNode)

{
i f (pInter faceNode != NULL)
{

DefaultBinaryOperatorNode_InstanceData_t∗ pThis =
pInter faceNode−>pInstanceData ;

pThis−>referenceCount++;
}

}

stat ic void DefaultBinaryOperatorNode_RemoveReference (
DefaultBinaryOperatorNode_InterfaceNode_t ∗ pInter faceNode)

{
i f (pInter faceNode != NULL)
{

DefaultBinaryOperatorNode_InstanceData_t∗ pThis =
pInter faceNode−>pInstanceData ;

pThis−>referenceCount−−;

i f (pThis−>referenceCount == 0)
{

Node_RemoveReference (pThis−>pLeftOperand) ;
Node_RemoveReference (pThis−>pRightOperand) ;
f r e e (pThis) ;

}
}

}

56

4.1. Instituting a root interface

Client
Pointer to instance through Scriptable Pointer to BinaryOperatorNode dispatch table

DefaultBinaryOperatorNode instance data

Pointer to Scriptable dispatch table

Reference count
Operator
Pointer to left operand
Pointer to right operand

...

...

...

...

Figure 4.3 Proposed instance data of DefaultBinaryOperatorNode objects

As noted earlier, the BinaryOperatorNode interface mandates a very specific memory
layout of the memory referenced by pointers to objects implementing this interface (by
way of BinaryOperatorNode_t, which appears in Listing 3.6 on page 40). The version of
DefaultBinaryOperatorNode in Chapter 3 (see Listing 3.8 on page 42) puts a pointer to the
dispatch table of the sole interface it implements first in its instance data, and as the memory
layout of the instance data is consistent with that required by the binary standard, pointers
that reference DefaultBinaryOperatorNode objects can simply point to the instance data.

For classes that implement multiple interfaces, multiple pointers to dispatch tables could
be put first in the instance data, as seen in Figure 4.3 (as before, the shaded areas denote
memory content that is not relevant to the binary standard, and which the implementation
may use for any purpose). Client variables always point directly to the dispatch table that
the client accesses the object through—in this figure, the client variable points directly to
the Scriptable dispatch table. If the class only implements one interface, client pointers
conveniently also point to the start of the instance data, allowing easy access to this data.
Implementing multiple unrelated interfaces complicates matters, though.

As the interfaces implemented by a class are statically known, it is possible to deduce the
address of the start of the instance data statically, and the layout presented in Figure 4.3 is
thus fully adequate. Indeed, many compilers for object-oriented languages, such as C++, use
a variation of this memory layout. A requirement is that a function is only accessed through
one interface, as which interface a function is accessed through must be statically known in
order to find the instance data.

However, for classes written directly in C, finding the start of the instance data is more
involved. It would be possible to use pointer arithmetic, but for the sake of simplicity and clear
code, an alternative approach will be used (which has the added benefit of allowing a single
function to be accessed through many interfaces). This example uses interface nodes, one
per implemented interface, that are compatible with types such as BinaryOperatorNode_t.
Their first member points to the proper dispatch table, and their second (and last) member
points back to the instance data, enabling functions, that now effectively take interface nodes
as their first arguments, to retrieve a pointer to the instance data (which can be seen in
Listing 4.3). This approach is depicted in Figure 4.4. Storing this data in a runtime-accessible
data structure makes it easy for implementations to find the start of the instance data, as the
offset to the address of the instance data is statically known.

57

4. Refining the object model

Client
Pointer to instance through Scriptable

DefaultBinaryOperatorNode instance data
Pointer to BinaryOperatorNode dispatch table
Pointer to start of instance data

...

Reference count
Operator
Pointer to left operand
Pointer to right operand

...

...

Pointer to Scriptable dispatch table
Pointer to start of instance data

...
Scriptable interface node

Figure 4.4 Revised instance data of DefaultBinaryOperatorNode objects

As DefaultBinaryOperatorNode now implements multiple interfaces, the functions imple-
menting the operations of these interfaces are now interface-agnostic, meaning that the formal
interface argument is now of the type DefaultBinaryOperatorNode_InterfaceNode_t. As
a result, interfaces that share some of the same operations can share the same implementa-
tion (this is especially useful for the operations defined in Fundamental).2 As a result, the
dispatch tables need to use typecasting, making them somewhat harder on the eyes. As two
separate interfaces are implemented, two dispatch tables are required as well; they are shown
in Listing 4.4.

The new version of the constructor in Listing 4.3 is somewhat more involved, as it needs
to initialize the interface nodes. (They are part of the instance data, and thus require no extra
work to allocate and deallocate.) There is also some work involved in playing by the rules
of reference counting; it makes copies of the left and right operand nodes (storing them as
part of its instance data), and thus needs to manually add references to them. It uses the
implementation of Fundamental::SwitchInterface() to return a proper reference through
the desired interface, and must take care to remove the reference added to its own untyped
reference before returning the reference returned by Fundamental::SwitchInterface().

The implementation of Fundamental::SwitchInterface() is simple and functional, as
are the implementations of the reference counting operations Fundamental::AddReference()
and Fundamental::RemoveReference(). The simple strategy used in the implementation of
Fundamental::SwitchInterface() does not scale well with a large number of implemented
interfaces, though. It would benefit from the use of an efficient data structure, such as a hash
table.

2Microsoft’s COM considers interfaces, once published to the outside world, frozen and thus unchangeable.
When new features need to be added, a new interface is created, which may only differ from the original by
having one new operation. COM classes often implement several versions of an interface to maintain backwards
compatibility. Having operation implementations that are interface-agnostic means that a class can very easily
support multiple interfaces with overlapping operations by simply pointing to the same functions from the
different dispatch tables.

58

4.1. Instituting a root interface

Listing 4.4 Excerpt 2 from a revised version of DefaultBinaryOperatorNode.c
/∗∗

∗ This i s the d i s pa t ch t a b l e f o r the <code>BinaryOperatorNode</code>
∗ i n t e r f a c e implemented by t h i s c l a s s .
∗/
stat ic const BinaryOperatorNode_DispatchTable_t

gBinaryOperatorNodeDispatchTable =
{

(bool (∗) (BinaryOperatorNode_t ∗ , wchar_t ∗ , Fundamental_t ∗∗))
DefaultBinaryOperatorNode_SwitchInter face ,

(void (∗) (BinaryOperatorNode_t ∗))
DefaultBinaryOperatorNode_AddReference ,

(void (∗) (BinaryOperatorNode_t ∗))
DefaultBinaryOperatorNode_RemoveReference ,

(bool (∗) (BinaryOperatorNode_t ∗ , boo l ∗))
DefaultBinaryOperatorNode_IsConstant ,

(bool (∗) (BinaryOperatorNode_t ∗ , unsigned int , unsigned int))
DefaultBinaryOperatorNode_PrintDebugInformation ,

(bool (∗) (BinaryOperatorNode_t ∗ , BinaryOperator_t ∗))
DefaultBinaryOperatorNode_Operator ,

(bool (∗) (BinaryOperatorNode_t ∗ , Node_t ∗∗))
DefaultBinaryOperatorNode_LeftOperand ,

(bool (∗) (BinaryOperatorNode_t ∗ , Node_t ∗∗))
DefaultBinaryOperatorNode_RightOperand

} ;

/∗∗
∗ This i s the d i s pa t ch t a b l e f o r the <code>Sc r i p t a b l e </code>
∗ i n t e r f a c e implemented by t h i s c l a s s .
∗/
stat ic const Scriptable_DispatchTable_t gScr iptab l eDi spatchTab le =
{

(bool (∗) (Sc r ip tab l e_t ∗ , wchar_t ∗ , Fundamental_t ∗∗))
DefaultBinaryOperatorNode_SwitchInter face ,

(void (∗) (Sc r ip tab l e_t ∗))
DefaultBinaryOperatorNode_AddReference ,

(void (∗) (Sc r ip tab l e_t ∗))
DefaultBinaryOperatorNode_RemoveReference ,

(bool (∗) (Sc r ip tab l e_t ∗ ,
wchar_t ∗ ,
Scr iptableReturnValue_t ∗ ,
ScriptableArgumentType_t ,
. . .))

DefaultBinaryOperatorNode_InvokeOperation
} ;

59

4. Refining the object model

4.2 Enabling very late binding
Very late binding makes it possible to access objects without having compile-time knowledge of
them. This is especially useful for script hosts, but also for bridging solutions. In the context
of component technology, bridging solutions make it possible for components written for one
component model to be usable with code written for another. Like a script host, a bridge does
not have compile-time knowledge of all interfaces it communicates with on behalf of other
code, and as such needs to use very late binding.

In this chapter, very late binding is realized through late binding. The new interface that
enables dynamically validated calls, Scriptable, is implemented by all classes that wish to
be accessible from clients such as scripts. A script interpreter or a bridge has compile-time
knowledge of this interface, and funnels all calls through it using late binding. It is up to
the implementing class to check the validity of an incoming call (whether the given operation
exists and the given arguments are of the correct types), call the proper operation (using late
binding), and finally interpret and return the return value, if any.

The C header file of the Scriptable interface is displayed in Listing 4.5. It includes
ScriptableReturnValue_t for return values, which relies on ScriptableArgumentType_t,
shown in Listing 4.6.

Listing 4.5 Scriptable.h
/∗∗

∗ @f i l e
∗
∗ This f i l e con ta ins an in t e r f a c e , <code>Sc r i p t a b l e </code>, which
∗ a l l ows invoca t i on s to be checked at runtime . In o ther words , i t
∗ f a c i l i t a t e s very l a t e b ind ing . With l a t e b inding , the
∗ implementat ions o f i n t e r f a c e s are found at runtime , but i n voca t i on s
∗ are checked s t a t i c a l l y . An o b j e c t implementing t h i s i n t e r f a c e may
∗ be c a l l e d from environments t ha t do not a l l ow invoca t i on s to be
∗ checked s t a t i c a l l y , such as s c r i p t i n g languages .
∗/

#ifndef INCLUSION_GUARD_SCRIPTABLE
#define INCLUSION_GUARD_SCRIPTABLE

#include <stdboo l . h>
#include <wchar . h>
#include " Fundamental . h "
#include " ScriptableArgumentType . h "

/∗∗
∗ The name o f t h i s i n t e r f a c e .
∗/

#define SCRIPTABLE_NAME (L" se . po lbe rge r . components . S c r i p t ab l e ")

/∗ Convenience macros f o r the opera t i ons i n h e r i t e d from the
∗ Fundamental i n t e r f a c e :
∗/

#define Sc r ip tab l e_Swi t ch In t e r f a c e (pScr ip tab l e , \
pInterfaceName , \
ppResult) \

60

4.2. Enabling very late binding

(pSc r i p tab l e)−>pDispatchTable−>Swi t ch In t e r f a c e (pScr ip tab l e , \
pInterfaceName , \
ppResult) ;

#define Scriptable_AddReference (pSc r i p tab l e) \
i f (pSc r i p tab l e != NULL) \
{ \

(pSc r i p tab l e)−>pDispatchTable−>AddReference (pSc r i p tab l e) ; \
}

#define Scriptable_RemoveReference (pSc r i p tab l e) \
i f (pSc r i p tab l e != NULL) \
{ \

(pSc r i p tab l e)−>pDispatchTable−>RemoveReference (pSc r i p tab l e) ; \
}

// Convenience macros f o r the opera t i ons de f ined in t h i s i n t e r f a c e :

/∗∗
∗ Invokes the s p e c i f i e d opera t ion wi th the g iven arguments . This
∗ opera t ion w i l l f a i l i f the under l y ing implementat ion does not
∗ suppor t the g iven operat ion , or i f the argument l i s t i s not
∗ co r r e c t . A l l arguments must be o f the co r r e c t t ype s .
∗
∗ The <code>firstArgumentType</code> must be s e t to the type o f the
∗ f i r s t argument , or
∗ <code>ScriptableArgumentType_NO_MORE_ARGUMENTS</code> i f the c a l l e d
∗ opera t ion accep t s no arguments . I t i s f o l l owed by the data o f the
∗ f i r s t argument . I f t h e r e are a d d i t i o n a l arguments , the next
∗ argument must be s e t to the type o f the next argument , f o l l owed by
∗ i t s data , and so on . The l a s t g i ven argument to t h i s opera t ion must
∗ be <code>ScriptableArgumentType_NO_MORE_ARGUMENTS</code >.
∗
∗ @param [in] pS c r i p t a b l e
∗ the in s tance implementing t h i s i n t e r f a c e . Must not be
∗ <code>NULL</code >.
∗ @param [in] pOperationName
∗ the name o f the opera t ion . This s t r i n g i s case−s e n s i t i v e . Must
∗ not be <code>NULL</code .>
∗ @param [out] pReturnValue
∗ a po in t e r to the v a r i a b l e which s h a l l ho ld the re turn va lue
∗ re turned from the c a l l e d opera t ion . This v a r i a b l e i s normal ly
∗ a l l o c a t e d on the s t a c k . I f the re turn va lue ho l d s a r e f e r ence to
∗ an o b j e c t implementing the <code>Sc r i p t a b l e </code> i n t e r f a c e
∗ (t h a t i s , i f <code>pReturnValue−>type ==
∗ ScriptableArgumentType_SCRIPTABLE</code >), the c a l l e r i s
∗ r e s p on s i b l e f o r removing the r e f e r ence t ha t has been added .
∗ @param [in] f irstArgumentType
∗ the type o f the f i r s t argument . This must be s e t to
∗ <code>ScriptableArgumentType_NO_MORE_ARGUMENTS</code> i f the
∗ c a l l e d opera t ion does not accep t any arguments .
∗ @return
∗ <code>true</code> i f the opera t ion comple tes s u c c e s s f u l l y ,
∗ <code>f a l s e </code> otherw i s e .
∗/

61

4. Refining the object model

#define Scr iptable_InvokeOperat ion (pScr ip tab l e , \
pOperationName , \
pReturnValue , \
. . .) \

(pSc r i p tab l e)−>pDispatchTable−>InvokeOperation (pScr ip tab l e , \
pOperationName , \
pReturnValue , \
__VA_ARGS__)

struct Scr iptable_DispatchTable_s ;

/∗∗
∗ Var iab l e s o f t h i s type may be used to r ep r e s en t o b j e c t s
∗ implementing t h i s i n t e r f a c e .
∗/

typedef struct
{

const struct Scr iptable_DispatchTable_s ∗ pDispatchTable ;
} Scr ip tab l e_t ;

struct Scr iptableReturnValue_s ;

/∗∗
∗ This i s the d i s pa t ch t a b l e , or v t a b l e , f o r t h i s i n t e r f a c e . I t
∗ r ep r e s en t s an i n d i r e c t i o n t ha t enab l e s the implementat ion o f an
∗ i n t e r f a c e to be bound to at runtime . I n t e r f a c e s wish ing to extend
∗ t h i s i n t e r f a c e must i nc l ude the complete con ten t s o f t h i s s t r u c t u r e
∗ as the f i r s t members o f t h e i r d i s pa t ch t a b l e s , changing the
∗ <code>Scr ip tab l e_t </code> type to match t h e i r own . (Only s i n g l e
∗ i n t e r f a c e i nhe r i t anc e i s supported .)
∗/

typedef struct Scr iptable_DispatchTable_s
{

// Operat ions i n h e r i t e d from the Fundamental i n t e r f a c e :
bool (∗ Sw i t ch In t e r f a c e) (Sc r ip tab l e_t ∗ pThis ,

wchar_t∗ pInterfaceName ,
Fundamental_t∗∗ ppResult) ;

void (∗AddReference) (Scr ip tab l e_t ∗ pThis) ;
void (∗RemoveReference) (Scr ip tab l e_t ∗ pThis) ;

// Operat ions de f ined in the S c r i p t a b l e i n t e r f a c e :
bool (∗ InvokeOperation) (Scr ip tab l e_t ∗ pThis ,

wchar_t∗ pOperationName ,
struct Scr iptableReturnValue_s ∗ pReturnValue ,
ScriptableArgumentType_t firstArgumentType ,
. . .) ;

} Scr iptable_DispatchTable_t ;

/∗∗
∗ This type r ep r e s en t s a re turn va lue from a s c r i p t a b l e opera t ion . I t
∗ i s a tagged union , t h a t i s , a s t r u c t u r e which conta ins the type o f
∗ i t s data , as w e l l as a union r ep r e s en t i n g the data .
∗/

62

4.2. Enabling very late binding

typedef struct Scr iptableReturnValue_s
{

/∗∗
∗ The type o f the data s t o r ed in t h i s tagged union (i t s
∗ tag).
∗/

ScriptableArgumentType_t type ;

union
{

/∗∗
∗ Data corresponding to
∗ <code>ScriptableArgumentType_INTEGER</code >.
∗/

unsigned int i n t ege rVa lue ;

/∗∗
∗ Data corresponding to
∗ <code>ScriptableArgumentType_DOUBLE</code >.
∗/

double doubleValue ;

/∗∗
∗ Data corresponding to
∗ <code>ScriptableArgumentType_BOOLEAN</code >.
∗/

bool booleanValue ;

/∗∗
∗ Data corresponding to
∗ <code>ScriptableArgumentType_CHARACTER</code >.
∗/

wchar_t characterValue ;

/∗∗
∗ Data corresponding to
∗ <code>ScriptableArgumentType_SCRIPTABLE</code >. I f the re turn
∗ va lue conta ins data o f t h i s type , the r e f e r ence must be removed .
∗ at some po in t .
∗/

Scr ip tab l e_t ∗ pScr iptab leVa lue ;
} va lue s ;

} Scr iptableReturnValue_t ;

#endif // INCLUSION_GUARD_SCRIPTABLE

Listing 4.6 ScriptableArgumentType.h
/∗∗

∗ @f i l e
∗
∗ This f i l e con ta ins an enumerated type r ep r e s en t i n g the d i f f e r e n t
∗ t ype s t ha t may be passed to (and re turned from) the

63

4. Refining the object model

∗ <code>Sc r i p t a b l e : : InvokeOperat ion ()</code> opera t ion .
∗/

#ifndef INCLUSION_GUARD_SCRIPTABLE_ARGUMENT_TYPE
#define INCLUSION_GUARD_SCRIPTABLE_ARGUMENT_TYPE

/∗∗
∗ This enumerated type r ep r e s en t s the d i f f e r e n t t ype s t ha t may be
∗ passed to (and re turned from) the
∗ <code>Sc r i p t a b l e : : InvokeOperat ion ()</code> opera t ion .
∗/

typedef enum
{

/∗∗
∗ The type i s i n v a l i d .
∗/

ScriptableArgumentType_INVALID ,

/∗∗
∗ There i s no type . This i s used f o r non−e x i s t e n t re turn va lues ,
∗ and may not be used f o r arguments to an opera t ion .
∗/

ScriptableArgumentType_VOID ,

/∗∗
∗ The type r ep r e s en t s an unsigned i n t e g e r (an <code>unsigned
∗ in t </code >).
∗/

ScriptableArgumentType_INTEGER ,

/∗∗
∗ The type r ep r e s en t s a double−p r e c i s i on f l o a t i n g−po in t va lue
∗ conforming to IEEE 754 (a <code>double </code >).
∗/

ScriptableArgumentType_DOUBLE ,

/∗∗
∗ The type r ep r e s en t s a boo lean va lue (a <code>bool </code >).
∗/

ScriptableArgumentType_BOOLEAN ,

/∗∗
∗ The type r ep r e s en t s a charac t e r (a <code>wchar_t</code >).
∗/

ScriptableArgumentType_CHARACTER ,

/∗∗
∗ The type r ep r e s en t s an a r b i t r a r y o b j e c t which implements the
∗ <code>Sc r i p t a b l e </code> i n t e r f a c e .
∗/

ScriptableArgumentType_SCRIPTABLE ,

/∗∗

64

4.2. Enabling very late binding

∗ This enumerator s i g n i f i e s t h a t no more arguments are expec ted in
∗ a c a l l to <code>Sc r i p t a b l e : : InvokeOperat ion ()</code >.
∗/

ScriptableArgumentType_NO_MORE_ARGUMENTS
} ScriptableArgumentType_t ;

#endif // INCLUSION_GUARD_SCRIPTABLE_ARGUMENT_TYPE

Scriptable has only one operation, the “meta operation” InvokeOperation(). A client
calls this operation to invoke a named operation offered by the class. It passes the name
of the operation to invoke, followed by a pointer to a (preferably stack-allocated) tagged
union which is to hold the return value after the commencement of the call, and finally
the arguments that are to be passed to the invoked operation. The arguments are given in
pairs: the first member of the pair denotes the type of the argument, and the second member
the actual data. ScriptableArgumentType_NO_MORE_ARGUMENTS must be the last argument.
Listing 4.7 shows an excerpt from a program testing late and very late binding by calling
Node::PrintDebugInformation() using both invocation mechanisms.

Listing 4.7 Excerpt from NodeTest.c
i f (r e s u l t)
{

p r i n t f (" \n ") ;
p r i n t f (" Tree (us ing l a t e b inding) : \ n ") ;
r e s u l t = Node_PrintDebugInformation (pRootNode , 0 , 2) ;

}

i f (r e s u l t)
{

p r i n t f (" \n ") ;
p r i n t f (" Tree (us ing very l a t e binding) : \ n ") ;

Sc r ip tab l e_t ∗ pScriptableRootNode = NULL;
Scr iptableReturnValue_t returnValue ;

r e s u l t =
Sc r ip tab l e_Swi t ch In t e r f a c e (pRootNode ,

SCRIPTABLE_NAME,
(Fundamental_t∗∗)&pScriptableRootNode) ;

i f (r e s u l t)
{

r e s u l t = Scr iptable_InvokeOperat ion (
pScriptableRootNode ,
L" PrintDebugInformation " ,
&returnValue ,
ScriptableArgumentType_INTEGER ,
0 ,
ScriptableArgumentType_INTEGER ,
2 ,
ScriptableArgumentType_NO_MORE_ARGUMENTS) ;

}

65

4. Refining the object model

i f (r e s u l t)
{

r e s u l t = (returnValue . type == ScriptableArgumentType_VOID) ;
}

/∗ While we don ’ t expec t the re turn type to be o f type Sc r i p t a b l e ,
∗ we are c on t r a c t u a l l y o b l i g a t e d to remove the r e f e r ence i f t h i s
∗ type i s re turned .
∗/
i f (returnValue . type == ScriptableArgumentType_SCRIPTABLE)
{

Scriptable_RemoveReference (returnValue . va lue s . pScr iptab leVa lue) ;
}

Scriptable_RemoveReference (pScriptableRootNode) ;

The supported types, for both input arguments and return values, are unsigned integers,
double-precision floating point values, boolean values, wide characters, as well as arbitrary
objects implementing the Scriptable interface. There is no type for strings, as the most
prudent way to represent a string is arguably as an object, a strategy which ensures that
memory will be properly managed through reference counting. A new interface, String,
could be introduced, and provided that classes implementing this interface also implement
Scriptable, strings would be available through very late binding. (Though it would likely be
more appropriate for a script host to have compile-time knowledge of the String interface
and map native strings in the scripting language to the String interface using late binding.)

DefaultBinaryOperatorNode implements the new interface in the most straightforward
way possible. Its performance is not optimal; using a data structure such as a hash table
would greatly speed up the string comparisons. The implementation is shown in Listing 4.8.

Listing 4.8 Excerpt 3 from a revised version of DefaultBinaryOperatorNode.c
stat ic bool DefaultBinaryOperatorNode_InvokeOperation (

DefaultBinaryOperatorNode_InterfaceNode_t ∗ pInter faceNode ,
wchar_t∗ pOperationName ,
Scr iptableReturnValue_t ∗ pReturnValue ,
ScriptableArgumentType_t firstArgumentType ,
. . .)

{
bool r e s u l t =

(pInter faceNode != NULL) &&
(pOperationName != NULL) &&
(pReturnValue != NULL) &&
(firstArgumentType != ScriptableArgumentType_INVALID) &&
(firstArgumentType != ScriptableArgumentType_VOID) ;

BinaryOperatorNode_t∗ pBinaryOperatorNode =
(BinaryOperatorNode_t ∗)
&(pInter faceNode−>pInstanceData−>interfaceNodeBinaryOperatorNode) ;

va_ l i s t arguments ;
va_start (arguments , f irstArgumentType) ;

i f (r e s u l t)
{

66

4.2. Enabling very late binding

i f (wcscmp(pOperationName , SCRIPTABLE_OPERATION_IS_CONSTANT) == 0)
{

bool i sConstant = f a l s e ;

// This opera t ion take s no input arguments .
r e s u l t =

(firstArgumentType == ScriptableArgumentType_NO_MORE_ARGUMENTS) ;

i f (r e s u l t)
{

r e s u l t = BinaryOperatorNode_IsConstant (pBinaryOperatorNode ,
&isConstant) ;

}

i f (r e s u l t)
{

pReturnValue−>type = ScriptableArgumentType_BOOLEAN ;
pReturnValue−>va lues . booleanValue = isConstant ;

}
}
else i f (wcscmp(pOperationName ,

SCRIPTABLE_OPERATION_PRINT_DEBUG_INFORMATION) == 0)
{

ScriptableArgumentType_t lastType = firstArgumentType ;
unsigned int argumentCount = 0 ;
unsigned int s t a r tPo s i t i o n = 0 ;
unsigned int i nd en ta t i onS i z e = 0 ;

// This opera t ion take s two arguments , both i n t e g e r s .
r e s u l t = (lastType != ScriptableArgumentType_NO_MORE_ARGUMENTS) ;

while (r e s u l t &&
(lastType != ScriptableArgumentType_NO_MORE_ARGUMENTS))

{
argumentCount++;
r e s u l t = argumentCount <= 2 ;

i f (r e s u l t)
{

r e s u l t = (lastType == ScriptableArgumentType_INTEGER) ;
}

i f (r e s u l t)
{

switch (argumentCount)
{

case 1 :
s t a r tPo s i t i o n = va_arg (arguments , unsigned int) ;
break ;

case 2 :
i nd en ta t i onS i z e = va_arg (arguments , unsigned int) ;
break ;

67

4. Refining the object model

default :
r e s u l t = f a l s e ;
break ;

}
}

i f (r e s u l t)
{

lastType = va_arg (arguments , ScriptableArgumentType_t) ;
}

}

i f (r e s u l t)
{

r e s u l t =
BinaryOperatorNode_PrintDebugInformation (pBinaryOperatorNode ,

s t a r tPo s i t i on ,
i nd en ta t i onS i z e) ;

}

i f (r e s u l t)
{

pReturnValue−>type = ScriptableArgumentType_VOID ;
}

}
else i f (wcscmp(pOperationName , SCRIPTABLE_OPERATION_OPERATOR) == 0)
{

BinaryOperator_t operator = BinaryOperator_UNDEFINED ;

// This opera t ion take s no input arguments .
r e s u l t =

(firstArgumentType == ScriptableArgumentType_NO_MORE_ARGUMENTS) ;

i f (r e s u l t)
{

r e s u l t = BinaryOperatorNode_Operator (pBinaryOperatorNode ,
&operator) ;

}

i f (r e s u l t)
{

pReturnValue−>type = ScriptableArgumentType_INTEGER ;
pReturnValue−>va lues . in t ege rVa lue = (unsigned int) operator ;

}
}
else i f (wcscmp(pOperationName ,

SCRIPTABLE_OPERATION_LEFT_OPERAND) == 0)
{

Node_t∗ pNode = NULL;
Scr ip tab l e_t ∗ pScr iptableNode = NULL;

// This opera t ion take s no input arguments .

68

4.2. Enabling very late binding

r e s u l t =
(firstArgumentType == ScriptableArgumentType_NO_MORE_ARGUMENTS) ;

i f (r e s u l t)
{

r e s u l t = BinaryOperatorNode_LeftOperand (pBinaryOperatorNode ,
&pNode) ;

}

i f (r e s u l t)
{

/∗ The re turn va lue i s an o b j e c t accessed through the Node
∗ i n t e r f a c e . We can only re turn t h i s va lue i f the c l a s s
∗ implementing t h i s i n t e r f a c e a l s o suppor t s the S c r i p t a b l e
∗ i n t e r f a c e , and we thus need to t e s t f o r t h i s a t runtime .
∗/
r e s u l t = Node_SwitchInterface (pNode ,

SCRIPTABLE_NAME,
(Fundamental_t∗∗)&pScr iptableNode) ;

}

i f (r e s u l t)
{

pReturnValue−>type = ScriptableArgumentType_SCRIPTABLE ;
pReturnValue−>va lues . pScr iptab leVa lue = pScr iptableNode ;

}

Node_RemoveReference (pNode) ;
}
else i f (wcscmp(pOperationName ,

SCRIPTABLE_OPERATION_RIGHT_OPERAND) == 0)
{

/∗ This code i s very s im i l a r to the one f o r hand l ing the l e f t
∗ operand , and has t h e r e f o r e been omit ted from t h i s code
∗ l i s t i n g .
∗/

}
else
{

r e s u l t = f a l s e ;
}

}

va_end (arguments) ;

i f ((! r e s u l t) && (pReturnValue != NULL))
{

pReturnValue−>type = ScriptableArgumentType_INVALID ;
}

return r e s u l t ;
}

69

4. Refining the object model

4.3 Object-oriented omissions

The object model developed in this chapter and in Chapter 3 is fairly complete. Objects are
prevented from interfering with one another, as they may only access the state of another
object through the interfaces it implements (realizing encapsulation).3 Also, objects can have
many “personalities” by implementing multiple interfaces (realizing polymorphism, which
dynamic dispatch makes possible). A few aspects that are often part of object models have
been omitted, though, and these aspects are discussed in this section.

4.3.1 Class interface

A class traditionally provides both an implementation and an interface. It is the interface
that enables a class to be used as a type. Interfaces wedded to a particular class are known
as class interfaces, and are the sole means of accessing objects in languages with no concept
of freestanding interfaces. Many modern object-oriented languages, such as Java and C#,
are hybrids in that they support both freestanding and class interfaces. A class interface in
such languages contains all operations found in the freestanding interfaces implemented by
the class, in addition to operations only accessible through the class interface.

This object model is unorthodox in that there are no class interfaces, and classes can
thus not be used directly as types.4 The only means of accessing a class is through one of
the freestanding interfaces it implements, which means that classes in this object model have
been reduced to pure implementation entities. This means that only virtual operations are
supported, thus necessitating the use of dynamic dispatch.

4.3.2 Implementation inheritance

Implementation inheritance is traditionally considered one of the three pillars of object-oriented
programming, along with encapsulation and polymorphism. This supposed third pillar has
been omitted from this object model.

Implementing support for single implementation inheritance would be straight-forward,
and Stroustrup (1999) demonstrates that supporting multiple implementation inheritance adds
very little in terms of complexity, runtime cost and memory overhead. Making implementation
inheritance part of the binary standard of this object model, however, allowing classes written
in different languages to extend one another, would add considerable complexity.

There are reasons to forego implementation inheritance completely. Snyder noted that
implementation inheritance breaks encapsulation as early as 1986. Szyperski et al. (2002:115)
offer a critique that centers on the tight dependency between classes and their ancestor classes,
called the fragile base class problem. The syntactic variant of the problem refers to the inability
to modify a class without recompiling all descendant classes and dependent clients, and is
solely concerned with binary compatibility (as compiled-in offsets are no longer correct when
the base class is modified). This problem was solved by IBM’s System Object Model (SOM),
by initializing dispatch tables at load-time.

3Malicious code can, of course, easily wreak havoc with the internal state of any accessible object, but this
is true for all object models implemented in native code, including C++. The point is, though, that the object
model, properly used, prevents such access.

4Interfaces can, of course, be constructed that are identical to what a class interface would look like in
Java, and be designated as such in the documentation.

70

4.3. Object-oriented omissions

The semantic variant of the problem is more interesting, and is concerned with changes
to the behavior of ancestor classes that a descendant class cannot cope with. If a class
overrides selected (virtual) operations of an ancestor class, it may become dependent on the
ancestor class calling these operations, perhaps even in a certain order. The dependence of
the descendant class on the behavior of the ancestor class is not regulated by the formal
(syntactic) contract between the two classes. The tight coupling that results makes evolution
of the ancestor classes difficult or impossible.

The recommended way to avoid implementation inheritance is to use forwarding, sometimes
known as delegation, which entails forwarding calls to internally-held objects.5 Forwarding calls
to an internally held reference works just as well for code reuse as inheriting an implementation
(with the downside that most languages require significantly more boiler-plate code to be
written). It does not allow for the same level of customization of another class as that afforded
by overriding operations of an ancestor class, though. Support for customization must be built
into the ancestor class, and not patched in, as is done when virtual operations are overridden.

4.3.3 Access specifiers

This object model does not support making parts of the instance data accessible to code outside
the class (such fields are often designated with a public access specifier in object-oriented
languages). Such support could easily be added (by exposing a structure containing the
public fields, and adding an operation to the Fundamental interface returning a pointer to
this structure), but it is probably preferable to eschew exposing parts of the instance data for
reasons of encapsulation.

All operations that are part of a dispatch table are per definition publicly accessible.
Private operations are easily realized by simply not exposing them in a dispatch table (and
declaring them static). (Private operations are always bound to statically, as they may only
be accessed by operations that belong to their own class.)

Object-oriented languages often support a protected access specifier that exposes a field
or operation only to descendant classes. As this object model does not support implementation
inheritance, there is no need for such an access specifier.

4.3.4 Multiple interface inheritance

The interfaces found in this chapter descend directly from one or zero other interfaces. Multiple
interface inheritance involves descending from multiple interfaces, and is somewhat more
involved to implement. This feature is useful as it allows for greater design expressiveness—an
interface can mandate that classes implementing it also implement a host of other related
interfaces.

With single interface inheritance, no matter how many ancestor interfaces an interface
has, classes only have to provide one dispatch table in order to successfully implement it.
Scriptable, which descends directly from Fundamental, provides only one dispatch table type,
Scriptable_DispatchTable_t (which is shown in Listing 4.5 on page 62). Such dispatch
tables also work for Fundamental (whose dispatch table type appears in Listing 4.1 on page 51),
because the members of Fundamental_DispatchTable_t appear before the new members
introduced in Scriptable_DispatchTable_t.

5Embarcadero’s Delphi programming language includes a language feature that makes forwarding less
verbose than having to manually forward every call. This feature is described in the footnote on page 82.

71

4. Refining the object model

With multiple interface inheritance, things are more involved. The approach taken by
Stroustrup (1999) is to mandate that classes that implement interfaces that descend from
multiple interfaces provide multiple dispatch tables. If interface Z descends from both X and Y,
two dispatch tables would have to be provided, one containing the members from the dispatch
tables of X and Z, and the other containing the members of Y and Z. Had support for multiple
interface inheritance been supported, Fundamental::SwitchInterface() would use different
dispatch tables depending on which interface was sought.

4.4 Moving toward component technology
The object model presented in this chapter is a binary standard. As such, it is concerned with
the layout of memory pointed to by object references, as well as the layout of dispatch tables.
Clients making use of objects conforming to this object model also need information on what
calling convention to use, as well as information on the type system, which unambiguously
specifies the memory representation of types used by the object model.

As a binary standard, the C code that realizes classes is not normative; it merely plays by
the rules of the standard. This is precisely how component models based on binary standards,
like Microsoft’s COM, work. In fact, this object model could, with a few additions, be expanded
to the point where it would qualify as a component model. These additions are discussed in this
section. (The component model sketched here borrows liberally from the playbook of COM.)

4.4.1 Factories

As things stand, classes such as DefaultBinaryOperatorNode can only be instantiated by
calling a C function specific to the class that is to be instantiated. Component models
typically strive to decouple clients from the classes they instantiate, which makes it possible to
instantiate classes without having compile-time knowledge of them. This property is especially
useful for scripting languages, as script hosts need to instantiate classes on behalf of scripts
they are interpreting, classes they have not been compiled against.

To realize this, a component model implementation needs to provide a means of instantiating
classes as part of a runtime system that all users of the component model are linked against.
This can take the form of a standard function called using procedural calling conventions,
or the form of an object implementing a system-provided interface. In order to instantiate
classes, this function or interface operation needs to be given an argument identifying the
class to be instantiated. As such, classes must be given runtime names, in the same vein as
the runtime names for interfaces presented in this chapter.

Different languages targeting the component model sketched here may use different memory
allocation strategies when instantiating objects. DefaultBinaryOperatorNode, for instance,
uses the malloc() function, part of the C standard library, to allocate memory for its
object instance. As a component model implementation cannot be privy to these details, it
delegates the work of instantiating objects to factories (as noted in section 2.2.5). A factory
could aptly be represented as an object implementing an interface with only one operation,
CreateInstance().

A component model implementation needs to be able to map runtime names of classes
to the factories that are capable of instantiating said classes, and as such needs access to a
data store that holds this information. In a statically linked system (that is, one that does
not support components per se), a data store in this vein would only need to map runtime

72

4.4. Moving toward component technology

names to addresses of factory objects. A system supporting true components would instead
need to locate the component housing the class to instantiate, and get an appropriate factory
from this component.

4.4.2 Code generation

Writing the low-level C code that realizes classes and interfaces that adhere to this object
model is arguably tedious and error-prone. The many languages that improve on C by adding
language-level support for object-orientation, such as C++ and Objective-C, are a testament
to the usefulness of having support for object-orientation at the language level.

Much of this low-level C code could be generated, though, provided that the relevant
classes and interfaces are described in an interface description language. An IDL compiler
could completely generate the interface files, including the access macros and the client variable
and dispatch table types. Class implementations could be generated as two files, one housing
dispatch tables and runtime names, and one containing the operation implementations. Only
the latter file would need to be manually edited to provide the domain-specific functionality.
Implementations of all Fundamental operations could also be generated, as well as an imple-
mentation of Scriptable::InvokeOperation(), if support for very late binding is desired.
Factories could also be automatically generated, as could proxies used for inter-process and
inter-machine communication, if support for location-transparent invocations is added to this
component model.

4.4.3 Runtime type information

Many modern languages provide the ability for programs to examine and even modify the
behavior of themselves. Java, for instance, has elaborate support for reflection, enabling
programs to locate classes, iterate over their methods, and invoke methods—all at runtime.
With such elaborate support for reflection built into the platform itself, supporting scripting
languages is trivial. There would be no need for a Scriptable interface; a script interpreter
would use the reflection services of the platform to reflectively verify the correctness of
invocations before dispatching them.

Providing this level of support for reflective operations requires that type information
normally only available at compile-time is available at runtime. In the solution presented in
Listing 4.8, some of this data is indeed present, embedded in the imperative code that makes
up the implementation of Scriptable::InvokeOperation(). In order to provide a fuller
reflection service, such data would need to be available as part of a generic data structure.
With an interface description language and an IDL compiler, this data structure could be
populated by generated code.

If every class makes type information on itself available at runtime, perhaps by adding an
operation to that effect to the Fundamental interface, it is possible to write class-agnostic im-
plementations of Fundamental::SwitchInterface() and Scriptable::InvokeOperation()
that could be shipped as part of the runtime system of a component model implementation.
The former operation would consult the type information to see if a requested interface was
implemented by the object, and if so, return a proper reference. The latter operation would
check the validity of invocations against the type information before invoking calls. Relying
on class-agnostic, generic implementations that use runtime-accessible type information saves
on code size compared to generating class-specific code.

73

4. Refining the object model

A class-agnostic implementation of Scriptable::InvokeOperation() would be somewhat
more complex to write than simply generating class-specific code, though. In particular, a
class-specific implementation can perform a normal C function call to invoke an operation
after verifying the correctness of the call, whereas a class-agnostic implementation would
not have the luxury of having the C compiler generate the machine instructions performing
the invocation. Instead, a class-agnostic implementation would manually have to construct
a stack frame to be pushed onto the call stack, and this part would need to be written in
architecture-specific assembly language.

4.4.4 Software components

The last major piece of the puzzle are the software components themselves. The most
reasonable way of implementing components is to piggyback on shared libraries (dynamically
linked libraries), that already provide many of the services needed by components.

Most software is implicitly linked with shared libraries (also known as “load-time dynamic
linking”). A program declaratively states which libraries it depends on, and the dynamic linker
of the operating system loads the dependent libraries into the address space of the program
at load-time, that is, before the program starts executing. As a shared library is potentially
loaded at an address which is not known at compile-time, a runtime structure, called a jump
table, is often used that holds the addresses to a shared library’s exported functions (Hunt
and Scott 1999). It is initialized by the dynamic linker at load-time, and is consulted before
functions in the shared library are called.6

Functions that realize object operations in this chapter are not exported—indeed, as they
are declared static, their symbol names are not even visible outside their compilation units.
Instead, they are accessed through dispatch tables. When a class is put in a shared library,
dispatch tables do double duty as jump tables, as well as serving their traditional role of
decoupling implementation from interface.

Shared libraries housing components should export one function though, one that makes it
possible to instantiate objects. This function should take the runtime name of a class as an
argument, and return a factory object capable of instantiating this class. Components must be
loaded using explicit linking (also known as “runtime dynamic linking”), as all components use
the same symbol name for this function. When a shared library is loaded explicitly, operating
systems universally return a handle that can be used to refer to the library at runtime.7 In
this context, this handle can be considered the runtime identity of the component, which
makes it possible to differentiate between components at runtime.

Components should also provide version information on themselves, and state what other
components they depend on. The runtime library of the component model discussed here
should take this information into account when loading a component, to make sure that all
dependencies are met.

With that, the broad outlines of a component model implementation have been sketched.

6Some systems, notably Windows, modify the executable code directly instead of using jump tables.
7POSIX-compliant systems, such as Linux and other Unix-like systems, provide the dlopen(), dlclose()

and dlsym() functions to link in shared libraries explicitly at runtime (dlopen() and dlclose() load and unload
a shared library, respectively, and dlsym() returns the address of the function associated with a given symbol
name). The equivalent functions under Windows are LoadLibrary(), FreeLibrary() and GetProcAddress(),
which roughly correspond to the aforementioned POSIX functions, in that order.

74

CHAPTER 5
Ways of the industry

For the most part, component technology grew out of industry, not academia, and evolved
from multiple directions. In the enterprise realm, the Open Group’s Distributed Computing
Environment (DCE) was developed in the early 1990s, and provided the infrastructure for
creating distributed applications. It was the first solution to use a formalized interface
description language. The IDL dialect of DCE was used to automatically generate client-side
and server-side proxies, hiding the low-level machinery used for inter-process and inter-machine
communication and thus making distributed computing vastly simpler to implement (Open
Software Foundation 1995; Hludzinski 1998). DCE only provided for remote procedure calls
with no object semantics, though. This was rectified by the Object Management Group’s
Common Object Request Broker Architecture (OMG’s CORBA), which helped heterogeneous
object-oriented systems interoperate.

Microsoft’s efforts started on the desktop, and grew out of an effort to make its office
productivity applications interoperate better. A technology dubbed Object Linking and
Embedding (OLE) enabled documents created in one application to link to or embed documents
created in other applications. OLE made it possible for, say, a presentation slide to contain an
embedded spreadsheet, which could be edited “in-place” by double-clicking it (without leaving
the presentation software). The component technology that resulted was the Component
Object Model (COM), whose later incarnations competed with CORBA in the enterprise space.
Other organizations also developed technology for intermingling different kinds of media in a
single document (such documents are known as compound documents). Apple based its (now
demised) competing technology OpenDoc on International Business Machines’s System Object
Model (IBM’s SOM) (Alger 1994).

Again on the desktop, Microsoft enjoyed early success with Visual Basic and its support
for third-party software made available as “custom controls.” Visual Basic later based its
component technology on COM. Borland’s Delphi product was compatible with components
built for Visual Basic, but also sported its own object and component models, and a fully
compiled, strongly-typed language.

Many of the more popular current component models for the desktop and the enterprise
are built on platforms based on capable virtual machines, considerably simplifying component
technology. Sun’s Java technology, as well as Microsoft’s COM successor, .NET, belong to
this category.

75

5. Ways of the industry

5.1 Visual Basic
Microsoft’s Visual Basic, first introduced in 1991, married the BASIC programming language
with a productive integrated development environment. This environment allowed for the
visual construction of applications by simply dragging visual “controls” from a toolbox to a
form, customizing said controls using attributes (such as the caption of a push button), and
attaching BASIC code to events.

The first versions of Visual Basic did not compile to native code, and instead relied on
an interpreter which negatively impacted performance. Controls were typically written in
C or C++ and packaged as Visual Basic Extensions (VBX), which can be regarded as the
components of early Visual Basic. A VBX file was a Windows shared library (a Dynamic-Link
Library, or DLL) which used a Visual Basic-specific application programming interface to
communicate with its host, and was expected to export a well-defined set of symbols specific
to Visual Basic. VBX controls were thus tightly coupled to Microsoft’s product.

Early versions of Visual Basic perfectly exemplified the division between component
assemblers and component writers, advocated by some proponents of component technology
(discussed on page 4). Component assemblers would compose components using the easy-
to-learn BASIC language and Visual Basic form designer, and component writers would
create components using comparatively complex native languages such as C or C++. The
performance cost of interpreting BASIC code is easy to bear in this line of thinking, as
performance-critical code is expected to be part of controls written in native code.1

Visual Basic gave rise to a successful component market. Controls ranged from simple
visual controls, such as sliders, to full-blown spreadsheet engines and database connectivity
tools (Szyperski et al. 2002:351). Despite the lack of a formal specification for Visual Basic
components, several vendors created competing products that could act as their hosts (Udell
1994).

The first versions of Visual Basic were the epitome of an environment sporting a first-
generation component model, as discussed in Chapter 2. Later versions gained native code
generation, and the ability to not only use COM components, but also author them. In fact,
32-bit versions of Visual Basic did not use the VBX component model, and instead based
their components on COM, which were dubbed OLE custom controls (OCX) (Szyperski et al.
2002:351). A variation of this technology later came to be known as ActiveX controls, which
also served as the plug-in technology for Microsoft’s web browser, Internet Explorer. The
current version of Visual Basic has little in common with its predecessors and is fully based
on .NET.

5.2 COM
The Component Object Model (COM) grew out of Microsoft’s efforts to make the various
parts of its Office productivity suite work together. The first version of the Object Linking and
Embedding (OLE) technology allowed one application, such as Microsoft Word, to embed the
content of another, such as Microsoft Excel, thus realizing compound documents. The second
version of OLE added things like in-place editing and drag-and-drop. Whereas OLE 1.0 was a

1Visual Basic’s interpreter did not interpret BASIC code, it interpreted p-code (pseudo code), which can be
likened to Java bytecode. Visual Basic 5.0, introduced in 1997, gained the ability to compile to native code.
Some versions of Microsoft’s 16-bit C++ compiler were also able to produce p-code. The chief selling point of
p-code was not portability, but smaller executable file sizes.

76

5.2. COM

self-contained technology, Microsoft opted to separate the object and component models from
OLE when building OLE 2.0, as it realized that the technology built for OLE could be useful
in other contexts as well. Tony Williams, one of the architects of COM at Microsoft, puts it
thus: “We decided to bite the bullet and make a much more formalized model of what is an
object, what does it mean to have interfaces, what does it mean to negotiate over them—and
[...] that became COM” (Microsoft 2006). While COM and OLE were both built by the same
team, Microsoft kept the distinction between them very clear. OLE 2.0 was layered on top of
COM, and consisted of a large number of interfaces and a small runtime system.

COM has evolved considerably since then. The COM runtime system ships with all modern
Windows versions, and a large number of Windows services are accessed using COM interfaces.
COM has also proven popular as a vehicle for realizing component technology for third-party
developers. The rich ecosystem that has grown up around ActiveX components, which are
based on COM, is a case in point (Szyperski et al. 2002:26). COM may be used to realize
distributed computing through Distributed COM (DCOM), and enterprise services (such as
the ones enumerated in section 1.7) through COM+ (Bukovics 2006).

COM has had a profound influence on the industry. While the original runtime system
powers a large number of applications and services on the Windows platform, it is the
ideas that underlie COM that have had the greatest impact. Many component models are
more or less faithful replicas of COM. Despite the Windows-centric nature of COM,2 the
technology is widely available on other platforms, reimplemented by vendors other than
Microsoft. Mozilla’s products, such as the Firefox web browser, use a COM-compatible
technology known as XPCOM (“XP” stands for “cross-platform”) (Turner and Oeschger
2003).3 Sun’s OpenOffice.org productivity suite uses the COM-inspired UNO component
model to enable OLE-like features, such as embedding, in-place activation and scripting using
the BASIC language (Sun Microsystems 2007).

In the embedded realm, many component models are heavily influenced by COM. Philips’s
and Samsung’s Universal Home API (UHAPI), for electronics appliances in the home, borrows
heavily from COM with its uhCOM technology. The Symbian operating system for mobile
handsets uses a COM-inspired component model called ECom (Symbian Foundation 2008).
ABB uses COM-like technology for their programmable controllers to increase the modularity
of their codebase (Lüders et al. 2005).

5.2.1 Technical foundation

COM is both an object model and a component model—components encapsulate instantiable
classes, which implement interfaces, through which objects communicate. As a binary standard,
it standardizes aspects of components and objects that are important to the correct functioning
of COM. It is agnostic to the implementation language used to write classes, as long as the
binary standard is adhered to.

Through its binary standard, COM standardizes the access mechanism for objects by
mandating a specific memory layout, calling convention and type system. As interfaces
are the sole means of accessing COM objects, COM is said to be a binary standard for

2There have been attempts to port COM to other platforms, notably Unix and the Apple Macintosh. Such
efforts have gained little traction, though (Szyperski et al. 2002:330).

3XPCOM is interesting in that components are written in C++, user interfaces described in an XML-based
language and the glue between them written in the scripting language JavaScript (again, exemplifying the
division between component assemblers and component builders).

77

5. Ways of the industry

Pointer to dispatch table Pointer to QueryInterface impl.

Pointer to operation n impl.

Pointer to operation 4 impl.
Pointer to Release implementation
Pointer to AddRef implementation

...

...

...

...

...

...

Dispatch tableInterface node
Pointer to object

Client

Figure 5.1 Memory layout of COM interfaces

interfaces. The memory layout mandated by COM is notably compatible with pure virtual
C++ classes, as produced by Microsoft’s own C++ compiler.4 As a result, COM goes some
way toward standardizing a C++ application binary interface (ABI) on the Windows platform,
making code produced by different C++ compilers compatible, at least as far as COM is
concerned.5 Vendors of compilers for languages other than C++ need to adhere to the
standard as well, if their language is to be compatible with COM. Embarcadero’s Delphi
integrated development environment, whose Delphi programming language is a variation of
Object Pascal, fully adheres to the COM binary standard by producing COM-conformant
objects (Calvert 1999:381). COM thus successfully creates a standard that enables disparate
object-oriented languages to communicate without losing their object semantics, and does so
by only standardizing the absolute minimum required to ensure binary interoperability.

The binary standard of COM is similar, but not identical, to the binary standard developed
in Chapter 4. Like this binary standard, COM does not support implementation inheritance,
which can be seen as a feature (as argued on page 70). A client variable points to a memory
area whose first member points to a dispatch table, the fields of which point to the actual
implementation (Szyperski et al. 2002:330). Figure 5.1 depicts this visually. The first
argument to a function that serves as the implementation of a COM operation must be a this
pointer, which again is consistent with Chapter 4. This allows COM to exhibit true object
characteristics.6

4If a compiler produces classes that are not compatible with COM’s binary standard, these classes can
not be used as the direct implementation vehicles for COM classes. However, COM is fully accessible to any
program compiled to native code that gives direct access to memory, such as programs written in C. A COM
class written in C does not look all that different from the classes presented in Chapter 4.

5There is much more to C++ binary compatibility than accessing objects created from pure virtual
classes. This includes exception handling, runtime type information, name mangling and (possibly multiple)
implementation inheritance (Clamage 2002). COM sidesteps many of these issues—return values are used
instead of exceptions, implementation inheritance is not supported and name mangling above that standardized
by C is not needed, as COM’s binary standard is based on dispatch tables. Also, COM provides its own
standards for runtime type information, in the form of IUnknown::QueryInterface() and type libraries.

6On 32-bit machines, COM uses the stdcall calling convention instead of the thiscall calling convention
normally used by Microsoft’s C++ compiler. The latter calling convention passes the this pointer via a register
and not on the call stack, whereas stdcall passes all arguments on the stack. C can easily support COM, as
most C implementations for Windows support the stdcall calling convention. As the callee is responsible
for cleaning the stack when stdcall is used, this calling convention (and thus COM) cannot support variadic
arguments (operations that take a caller-determined number of arguments).

78

5.2. COM

A COM class may implement any number of interfaces. All interfaces directly descend
from one other interface, except IUnknown, the root of the interface inheritance hierarchy (by
convention, all compile-time interface names start with “I”). IUnknown is, for most intents and
purposes, identical to the Fundamental interface introduced in Chapter 4. The COM equiva-
lent to the Fundamental::SwitchInterface() operation is IUnknown::QueryInterface(),
and Fundamental::AddReference() and Fundamental::RemoveReference() correspond to
IUnknown::AddRef() and IUnknown::Release(), respectively.

COM uses reference counting to manage memory. Objects need not be reference counted
in their entirety—each interface implemented by an object can be separately reference counted.
This feature is known as tear-off interfaces, and can be used by an object to initialize and
destroy resources on a per-interface basis, thus conserving resources (Szyperski et al. 2002:334).

Runtime names need to be assigned to a large number of different COM entities, including
classes and interfaces. COM uses Universally Unique Identifiers (UUIDs) for this purpose, also
referred to as Globally Unique Identifiers (GUIDs) by Microsoft. A UUID is a 128-bit number
which has a very high probability of being globally unique. A textual representation of a
UUID can look as follows: “7a3fc5d3-f79a-4de5-827d-d0f5619a4c99.” The Windows Registry
serves as the data store that maps UUIDs to components (shared libraries for objects that run
in-process and executable files for objects that run out-of-process). (Recent Windows versions
support in-process COM components that are not globally accessible, and thus do not need to
be stored in the Registry (Templin 2005).)

Operations in COM interfaces are expected to provide error information in the form of
integer return values known as HRESULT. True return values are provided as output arguments.
A HRESULT value is a 32-bit integer value divided into a number of fields.

To the extent that COM supports versioning, it does so through avoidance. An interface
UUID identifies not only an interface, but also its version, thus requiring that interfaces, once
published, are never changed. A class can easily support multiple versions of an interface
by implementing all interfaces corresponding to the different versions. Newer clients use
IUnknown::QueryInterface() to query for a newer version, while older clients query for an
older version.

A COM component may not only run in the caller’s context, it can also run in a different
process or (through DCOM) on a different machine altogether. Inter-process communication
and inter-machine communication are facilitated using client-side and server-side proxies, as
explained in section 2.2.3 (referred to in COM as “proxies” and “stubs,” respectively). COM
supports both synchronous (blocking) and asynchronous (non-blocking) calls to components
running out-of-process (Prosise 2000a).7

Marshalling may be handled automatically by COM, called standard marshalling. Ad-
vanced users that wish to handle all marshalling aspects themselves may elect to use custom
marshalling. The latter may be preferable for performance-critical applications, as it makes it
possible to handle certain operations without deferring to a remote server, thereby cutting
down on inter-process or inter-machine calls. A custom-written client-side proxy could, for
instance, cache data in the client process, and transparently operate on this state instead of
consulting the remote object. Many of the benefits of custom marshalling may be reaped using
in-process handlers, without the complexity of the former approach. An in-process handler

7To make inter-machine calls, DCOM uses an object-aware variant of the DCE wire format for remote
procedure calls called Object RPC (Eddon and Eddon 1998). DCOM contacts a service known as the Service
Control Manager on the remote machine to process and route inter-machine calls. This service performs a
function similar to an ORB in CORBA, which is discussed in section 5.4 (Szyperski et al. 2002:341).

79

5. Ways of the industry

may elect to handle some operations locally, while delegating others to standard marshalling
(Prosise 2000b).

COM can be used with the interface description language COM IDL, but as a binary
standard, using this language is strictly speaking optional. COM IDL is an extended version
of DCE’s IDL, notably adding objects to the language (Hludzinski 1998). Microsoft’s IDL
compiler can generate client-side and server-side proxies, C/C++ language bindings, as well
as type libraries. A type library is a non-textual, efficient representation of a set of IDL files,
which may be deployed to end-users’ systems as stand-alone files, or embedded as resources
in shared libraries or executable files.8 A type library is essentially a repository of type
information available at runtime. The COM runtime system can read type libraries, and make
the data therein available through the ITypeInfo interface. Language bindings are typically
not generated directly from IDL files, but from type libraries, as type libraries are the entities
that are deployed to end-users’ systems.

Factories are used in COM to instantiate classes. For a class to be instantiable, there
must be an implementation of IClassFactory available that can instantiate said class. A
COM component that runs in-process (and thus is implemented as a shared library) must
export a function that returns an object implementing IClassFactory for a given class UUID
passed as an argument. A COM component that runs out-of-process on the same machine is
implemented as a standard executable file, that when started registers its class factory with
the COM runtime system (Goswell 1995).

One of the selling points of COM is that it enables what Microsoft calls Automation—the
ability for one program, typically a script, to access and control another, which is often
written in native code. A script written in Visual Basic can, for example, use the charting
engine of Microsoft Excel through Automation. Automation allows applications to make their
functionality available as a set of COM objects.

Automation implies that the validity of invocations are verified only at runtime, thus
making use of very late binding (see section 4.2). The traditional solution in COM is to
require that classes that wish to be accessible through very late binding implement the
IDispatch interface, which is analogous to the Scriptable interface presented in Chapter 4.
(Classes that are accessible using both late binding and very late binding, and thus imple-
ment IDispatch in addition to traditional, domain-specific interfaces, are said to use dual
interfaces). IDispatch::Invoke() does not, unlike Scriptable::InvokeOperation(), take
a string representing the name of the operation as an argument. Rather, it takes a dispatch
identifier, which can be retrieved at runtime using IDispatch::GetIDsOfNames(), presumably
for reasons of efficiency. If a component ships with a type library, the implementation of the
IDispatch interface can be fully synthesized at runtime, or by simply forwarding calls to a
system-provided implementation of ITypeInfo.

5.3 Delphi

In 1995, a few years after the introduction of Visual Basic, Borland introduced its first version
of Delphi. At first glance, Delphi was very similar to Visual Basic. It came with an integrated
development environment, complete with a visual designer used to construct user interfaces
by dropping controls on forms, changing their properties and associating code with events.

8Type libraries can only represent a subset of the information contained in IDL files. A type library cannot
represent multiple output arguments, for instance (Hunt and Scott 1999).

80

5.3. Delphi

Delphi came with its own component model, but also supported VBX components built for
Visual Basic. (Delphi 1.0 was a 16-bit environment. Later versions would add support for the
32-bit OCX/ActiveX components of later versions of Visual Basic.)

On closer inspection, the similarities were only skin deep. Delphi used the object-oriented
Object Pascal language (later renamed the Delphi programming language), and came with a
fast, optimizing compiler with a built-in assembler. Developers had full access to the Windows
application programming interface from their applications, and could create shared libraries
available to code written in languages such as C, C++ and even Visual Basic.

Contemporary versions of Delphi are owned and sold by Embarcadero Technologies, and
target 32-bit Windows versions, with a planned 64-bit version. A separate product, using a
slightly different programming language, is available for Microsoft’s .NET platform as Delphi
Prism.

Classes that descend from the TComponent class are referred to as “components” in Delphi,
and may be manipulated in a visual editor. (This usage of the “component” word is inconsistent
with the terminology used in this thesis.) Delphi has language-level support for properties
that are used to visually customize such objects. Properties that are used in this way must
come with extended runtime type information, partly so that their names can be presented to
the developer in the visual environment. There is an additional “access specifier,” published,
for this purpose, which is identical to public in most respects, but stores extended type
information. Delphi also has “controls” that feature graphical user interfaces at runtime
(in other words, a slider or a check box is both a “control” and a “component,” whereas
a non-visual object that enables a developer to set up a database connection for use by
data-aware controls is only a “component”). Such objects extend the TControl class which
itself extends TComponent.

As of Delphi 3, code may be packaged as a special kind of shared library, a package, and
these packages indeed qualify as components (with the notable exception that packages do
not provide version information in a standardized way, and multiple versions cannot easily be
loaded at the same time). A Delphi package may declaratively specify what other packages it
depends on (Lischner 2000:7).

Delphi takes a very aggressive approach to supporting COM, and goes as far as making
COM a part of the core language (although most of the COM support resides in the runtime
system, and the COM language features are very much optional). The memory layout of
Delphi classes is compatible with COM, enabling Delphi classes to function as COM classes
if certain additional rules are followed (Lischner 2000:71). Interfaces are part of the Delphi
language, at least partly for the sake of COM compatibility. Regardless of whether COM
is used, all Delphi interfaces must extend the COM IUnknown interface, and be assigned a
runtime name in the form of a UUID (the Delphi language provides a convenient UUID literal
syntax for this purpose, making UUIDs very readable).

As all interfaces are known to be reference counted, Delphi calls IUnknown::AddRef()
and IUnknown::Release() automatically; the former when references are assigned, the latter
when references go out of scope (much like a C++ smart pointer). Delphi also has special
language-level support for IUnknown::QueryInterface(): the as operator (which is normally
used for “safe” typecasts9) uses the IUnknown::QueryInterface() operation when the first
operand is an interface reference (Lischner 2000:54).

9A safe typecast checks the validity of the cast at runtime, using runtime type information, and throws an
exception if the cast is not valid. Delphi also supports traditional Pascal typecasts, which are not checked.

81

5. Ways of the industry

While it can be argued that mandating the use of IUnknown as a base interface does
not constitute bringing COM itself into the language (as interface navigation and reference
counting are arguably useful for interfaces, regardless of whether COM is used), Delphi does
have explicit language-level constructs that solely exist to support COM; a sampling follows:10

• Accessing an object through the IDispatch interface normally means that the compiler
cannot perform static type checking, and that errors are only signaled at runtime. Delphi
provides the dispinterface keyword for declaring such an interface, enabling errors
to be caught at compile-time. dispid keywords can be used to manually assign the
dispatch identifiers expected by IDispatch::Invoke() (Lischner 2000:179).

• Delphi introduces the safecall calling convention explicitly for the benefit of COM.
This calling convention is identical to the stdcall calling convention expected by COM
(and all other standard Windows functions), but adds exception “firewalls.” As COM
uses error return values in preference to exceptions, Delphi exceptions cannot cross a
COM call boundary. The safecall calling convention solves this problem. If a Delphi
method, declared with this keyword and serving as the implementation of a COM
operation, throws an exception, the exception is caught and converted to the HRESULT
return value expected by COM. Calling a COM operation works in much the same
way—the HRESULT value is checked automatically, and an exception is thrown if the
return value does not indicate success (Lischner 2000:326).

• In order to refer to a variable whose type is not known, a strongly typed language needs
what is sometimes called a variant type. Variables of such a compile-time type can
change their type at runtime. The ScriptableReturnValue_t type, shown on page 63,
is an example of a simple variant type. Variant types are often, as in the preceding
listing, implemented as a tagged union in C. Delphi has a dedicated type for variants,
simply named Variant. In particular, Delphi also has the type OleVariant, which is
restricted to COM-compatible types (Lischner 2000:270). Both are built-in primitive
types, and have no formal declaration outside of the compiler implementation.

Delphi’s language-level support for COM makes for unusually clean COM code, although
it is unusual with language features specifically tailored to a particular platform.11 Most
of Delphi’s COM support is confined to its runtime system, though, which provides classes
such as TComObject that can be extended to easily create classes compatible with COM, and
TComObjectFactory which implements IClassFactory (Calvert 1999:386). The integrated
development environment includes COM “wizards” that help developers with various COM-
related tasks without requiring much knowledge of COM’s inner workings. For instance,

10As COM has no native support for implementation inheritance, forwarding calls is often more natural than
using implementation inheritance when writing a COM class (and arguably better practice in other scenarios as
well, given the reservations expressed on page 70). The Delphi keyword implements is, while not COM-specific,
very useful when used with COM, as it introduces language-level support for forwarding. Using this keyword,
an object, implementing a set of interfaces, can delegate the implementation of any number of its implemented
interfaces to other objects it maintains references to. While this can obviously be implemented by manually
forwarding calls to the internally referenced objects, this keyword makes for less verbose code.

11Languages such as C# and Java allow developers to associate code with arbitrary metadata. Had Delphi
had such support at the time when COM support was introduced, it is conceivable that some of its COM-specific
language support would have been in the form of such metadata. This is the route taken by C#/.NET for
COM compatibility (discussed on page 94).

82

5.4. CORBA

Delphi can automatically wrap a Delphi control as an ActiveX control, usable in a variety of
environments, including Visual Basic. Delphi language bindings can be generated for COM
components by “importing” their type libraries.

Delphi is a good example of a language that integrates very closely with COM, making
writing and using COM objects less daunting. Microsoft also provides such tools, notably in
the form of Visual Basic 6, and the Active Template Library, a set of template-based C++
classes for creating COM objects.

5.4 CORBA

The Common Object Request Broker Architecture (CORBA) is a standard of the Object
Management Group (OMG), one of the largest software consortia in the computer industry. It
enables objects running on different platforms, on different machines and written in different
programming languages to interoperate. The OMG does not create software per se; it creates
specifications that are implemented by different vendors. There are a large number of CORBA
implementations—some commercial, others open source—that to a fairly large degree can
be substituted for one another (unless proprietary extensions are used). The primary focus
of CORBA is on enterprise systems, and as such, CORBA standardizes a large number of
services that are useful for such systems, handling aspects such as database transactions,
concurrency, object persistence, licensing, event notification and security (Szyperski et al.
2002:240). CORBA’s naming service is especially important, as it allows clients to look up
server objects by name (Aleksy et al. 2005:269). Despite CORBA’s early focus on the enterprise,
there are also specifications that enable CORBA implementations on resource-constrained
embedded systems (Schmidt and Vinoski 2001). CORBA’s strengths aside, there has been
some concern lately that interest in CORBA is waning (Henning 2006).

The CORBA runtime system consists of an Object Request Broker (ORB), which routes
calls from one object to another and returns potential return values. An ORB handles all
invocation specifics, such as finding the target object and marshalling arguments. All object
invocations, regardless of whether the receiving object runs in-process or out-of-process, go
through the ORB. By mandating the use of runtime software for all object invocations,
CORBA can effectively hide differences between communicating objects—what languages they
are written in, on what machines they are running and the operating system used—without
requiring that their interfaces all look the same in memory. Thus, CORBA is, unlike COM,
not a binary standard.

All objects are accessed using interfaces, which are specified in a CORBA-specific IDL
dialect. It is this language, in conjunction with formalized language bindings, that serves as
the standardization mechanism of CORBA, not the memory representation of interfaces. The
IDL dialect is incompatible with that used by COM, and provides a few features unsupported
by COM IDL, such as support for exceptions, modules and multiple interface inheritance.
Aside from an ORB, every CORBA implementation also ships with an IDL compiler. One of
the primary uses of a CORBA IDL compiler is to generate language-specific client-side and
server-side proxies (known as stubs and skeletons, respectively), which are used to issue and
deliver object requests. Stubs are used by clients that can check invocations at compile-time,
such as those written in C or C++.

Clients that invoke operations without having compile-time knowledge of them, and thus
use very late binding, cannot use a stub. Rather, they must use the Dynamic Invocation

83

5. Ways of the industry

Interface (DII) of CORBA. As this interface is provided by the ORB, the target object
remains oblivious to the invocation mechanism used to communicate with it (this is in stark
contrast to COM, which requires objects reachable through very late binding to implement
the IDispatch interface themselves). Dynamic invocations can be both synchronous and
asynchronous. CORBA also supports the Dynamic Skeleton Interface (DSI), which allows
objects to receive requests without having compile-time knowledge of the interfaces they
implement.12 The runtime type information required by these interfaces is stored in CORBA’s
Interface Repository, which is analogous to a set of COM type libraries. Like type libraries,
the Interface Repository can be traversed programmatically (Vinoski 1997).

CORBA defines a number of standardized language bindings, which make it possible
to access and implement CORBA objects in a given language.13 (As a binary standard,
COM does not have to define any language bindings—it simply defines a binary standard
for interfaces, and expects compilers and script hosts to adapt to this standard.) Language
bindings are implemented by an object adapter, leaving the ORB to focus on language-agnostic
parts of the runtime system. An object is an abstract entity that clients refer to through
object references, which as of CORBA 2.0 have been standardized as Interoperable Object
References, or IORs. An IOR contains all the information necessary to contact the object,
including the IP address and port number for a remote object. The implementation of an
object is known as a servant (Aleksy et al. 2005:15). The object adapter is responsible for
binding an object reference to a concrete servant, which can serve the request made on the
object.

While CORBA does not define a binary standard for interfaces, it does standardize the
wire format used over a network. Prior to CORBA 2.0, there was no standardized wire format.
As a result, vendors used their own proprietary formats, meaning that two objects using ORBs
from different vendors could not communicate. As of CORBA 2.0, all implementations must
support the standardized Internet Inter-ORB Protocol (IIOP), which is an implementation of
the General Inter-ORB Protocol (GIOP).

CORBA 3.0 introduces the CORBA Component Model (CCM), which formally defines
components in the CORBA context. CCM defines an execution environment for hosting
components in the form of an application server, thus removing the need for developers to build
ad-hoc server solutions. In addition, CCM introduces standards for packaging, assembling, and
deploying components, enabling CORBA implementations to activate components remotely
(prior to CCM, there were no such standards, making users rely on non-standard solutions).
CCM augments the standard IDL language with the Component IDL (CIDL) language, which
enables developers to describe components and their interfaces (Schmidt and Vinoski 2004).

5.4.1 Implications of not using a binary standard

The CORBA approach of standardizing on an IDL dialect and on formalized language bindings,
instead of on the memory layout of interfaces as COM does, has a few implications. First,
in-process object invocations are by necessity slower than had a binary standard been used. A
CORBA object invocation is normally done indirectly through an ORB, which marshals all
arguments before contacting the target object. In-process COM calls are identical to calling a
C++ virtual member function, and thus entail no such performance penalty.

12This is useful for solutions that act as bridges between CORBA and other component models.
13CORBA language bindings are formally called “language mappings.”

84

5.5. Java

Some ORBs use the same stubs and skeletons for in-process calls as for remote calls,
which means that in-process calls are marshalled, sent over the network loopback interface,
and unmarshalled by the ORB before finally reaching the servant. The poor performance
characteristics of this strategy can be mitigated using so-called collocation optimizations.
Schmidt et al. (1999) describe two such optimization strategies implemented for the open-
source TAO ORB, one of which routes calls through the object adapter, and one which
forwards calls directly from the stub to the servant. The first strategy improves performance
by several orders of magnitude, but is still twice as slow as a call through a dispatch table.
The second strategy almost closes the performance gap, but is no longer CORBA-compliant
(cutting the ORB out of the loop means that it can no longer perform any of its services,
such as intercepting calls to enforce a threading or security policy). Also, it only works if the
client and servant are known to be binary compatible, that is, if they have been written in
the same language, or target the same binary object model. Despite primarily being designed
for distributed systems, this research demonstrates that CORBA’s performance can be quite
competitive with that of a binary standard.

A second implication of CORBA’s design is that making a solution compatible with
CORBA is likely less onerous that making it compatible with COM, as a COM-compatible
language must comply with the binary standard of COM, if native objects of that language
are to be regarded as COM objects.14 CORBA’s requirement that a runtime layer, in the form
of an ORB, is used may entail a slight performance penalty, but it does free implementations
from having to adopt a binary standard. Enabling a scripting language to be used for writing
COM classes, for example, is possible, but requires script hosts to use internal data structures
compatible with COM’s binary standard, or alternatively synthesize such structures at runtime.
CORBA’s requirement that an ORB must be used to invoke operations successfully decouples
the implementation structures used for objects from the ability to invoke operations on such
objects. COM’s approach is effective from a performance point of view, though, and well-
suited to environments where classes are expected to be written in a compiled object-oriented
language such as C++, and accessed from a scripting language, such as older versions of
Visual Basic.

A third implication of objects always communicating through an intermediary is that calls
to objects can be trivially intercepted, which is more difficult if no such intermediary is present
at all times. Some component models allow users to request the use of services in a declarative
manner, which is realized by intercepting calls. This is the subject of Chapter 7.

5.5 Java

The first few years of what would eventually be known as Java were difficult. Sun Microsystems,
the owner of the technology, initially struggled to find a market for its technology. When the
company failed to find a niche in TV set-top boxes in the middle of the 1990s, it turned to
the emergent World Wide Web. A deal was struck with Netscape, a maker of web browsers,
to bundle the Java technology with their products. Through small programs running within

14A programming language with no native objects, or native objects that do not adhere to COM’s binary
standard, may still make COM objects available if they, like C, support structures, pointers and calling functions
through pointers. This approach can be used with a C++ compiler whose native objects are incompatible with
COM, for instance.

85

5. Ways of the industry

the confines of a web browser, known as applets, Java enabled interactivity and animation on
what was then a largely static Web (Bank 1995; Byous 1998).

Today, Java enjoys considerable success in the enterprise space with its Enterprise Edition.
This edition provides a component model known by the name of its components—Enterprise
JavaBeans (EJBs).15 EJBs give access to many of the enterprise services enumerated in
section 1.7, such as declarative handling of database transactions. The Micro Edition of Java
is used in the embedded space, and is commonly run on cellular phones, powering many of the
downloadable applications and games on Java-compatible phones. A variety of solutions exist
for running Java code, partly or fully, directly on embedded hardware platforms where it may
not be practical to use just-in-time compilation (Libby and Kent 2009). The Standard Edition
runs on desktop machines, and provides a large number of standard libraries, including ones
that allow programmers to create graphical user interfaces. Java applets are still used by
modern web sites, but perhaps not to the extent originally envisioned. Sun released most of
the Java code under an open-source license in 2007.

Java is an object-oriented language supporting exceptions and parameterized types (gener-
ics). Java programs are typically compiled to machine code (bytecode) for a stack-based virtual
machine, known as a Java Virtual Machine (JVM). The virtual machine implementation may
interpret all bytecode, but most contemporary implementations compile at least some of the
bytecode to native code to speed execution (using just-in-time compilation).16 This has the
benefit of enabling Java programs to run on any platform for which a JVM implementation
exists. Java provides a strong security infrastructure, which ensures that untrusted code, such
as applets, can be safely allowed to run.

5.5.1 Repartitioning the platform

Component models such as COM provide a wealth of functionality, most of which is not
related to software components per se. A memory management strategy that can cope with
independently written parties, an object model and access to type information at runtime are
enablers of component technology, but need not be considered part of it.

The designers of Java had the luxury of designing a new platform from the ground
up, complete with a new instruction set, and were thus not hamstrung by the requirement
that traditional compilers, targeting traditional processors, be used. The partitioning of
functionality thus looks quite different in Java: much of the technology often associated with
component technology has completely migrated to the core platform.

Object model

COM provides both a component model and an object model. The Java language has an object
model built-in. In recognition of the problems caused by allowing multiple implementation
inheritance (Szyperski et al. 2002:111), Java only supports single implementation inheritance,
but does support multiple interface inheritance. Classes and interfaces are contained in packages,
which both serve as Java’s namespace mechanism and as a means of access control. Packages

15Java also comes with a technology named JavaBeans, which is unrelated to Enterprise JavaBeans. Such
JavaBeans are at their core ordinary Java objects that follow certain conventions, making it possible to customize
their properties in visual tools. JavaBeans are touted as components, but are not compatible with the view of
software components adopted by this thesis.

16Third-party solutions exist that enable ahead-of-time compilation, such as GNU’s GCJ.

86

5.5. Java

are identified using the same strategy as that presented in Chapter 4, that is, top-level Internet
domain names are used as part of the name to ensure its uniqueness, forming names such as
org.organization.project. Compile-time names of classes and interfaces are qualified by the
names of their packages, forming names such as org.organization.project.SomeInterface.
Packages contain classes and interfaces, which may be declared as being either public (and
thus accessible to all classes) or private to their parent package.

Not only does the Java language provide classes and objects, the instruction set of the
JVM is also object-savvy.17 All languages targeting the Java instruction set can use classes
defined in a different language targeting the same (virtual) machine, as there is nothing
language-specific about the definition of a class or an interface. Hence, Java standardizes
objects on the level of its instruction set, COM on the memory representation of interfaces
and CORBA on an interface description language coupled with formalized language bindings.

Reflection

Java makes type information available at runtime through reflection, allowing a program to,
for instance, iterate over all methods provided by a certain class and invoke one based on
whether its name contains a given substring. (This can be used by frameworks that rely on
naming conventions in lieu of more traditional mechanisms, such as having classes implement
certain interfaces.)

As a result of this support, a Java program can inspect an interface at runtime and
synthesize a class implementing it, which is especially useful for creating proxies at runtime.
Having support for reflection as a core part of the platform also means that supporting very
late binding is close to trivial. A script interpreter written in Java can easily expose a function
library to the scripts it executes, or even give access to the complete Java class library.

Memory management

Java uses automatic garbage collection in preference to manually managing memory, thus
eliminating many of the problems associated with reference counting (cyclic references and
programmers forgetting to add or remove references).

Error handling

Java uses exceptions to signal errors. Unusually, Java introduces the notions of checked and
unchecked exceptions. Checked exceptions must be either caught and handled, or the method
throwing the exception must explicitly list the exception (or one of its ancestor classes) in
its throws clause. Unchecked exceptions behave as exceptions in other languages, that is,
they automatically propagate if not explicitly handled. At best, checked exceptions make the
programmer aware of potential error conditions that should be handled (such as opening a
file that may not exist), at worst, it introduces verbose code to handle exceptions that are
a priori known never to be thrown (such as compiling a regular expression that is stored as
a string literal). Whether an exception is checked or unchecked is determined statically, by
checking to see if the exception class is in an is-a relationship with a system ancestor class.

17Had, say, the ubiquitous x86 instruction set provided object-savvy instructions (such as one for invoking a
virtual operation using late binding), there would be little disagreement over how to implement this functionality
in compilers for two different object-oriented languages. (That is not to say that having support for object-
orientation at the silicon or microcode level would be appropriate from a cost-benefit perspective, though.)

87

5. Ways of the industry

Distributed computing

Java has support for distributed computing in the form of Remote Method Invocations (RMI).
The original version of RMI only supported communication between two Java virtual machines,
using a custom wire format; current RMI versions also support CORBA, and can thus also
use the CORBA IIOP wire format.18 This version is called RMI-IIOP. RMI is used internally
by other parts of Java, such as Enterprise JavaBeans.

Objects that are to be available remotely must explicitly implement an interface to that
effect—java.rmi.Remote. RMI provides a registry that such objects need to register with.
Once a reference to a remote object has been acquired, methods can be called on the remote
object as though they were local—the RMI runtime system handles marshalling. Objects that
implement the Remote interface can be passed by reference. RMI passes objects by value that
do not implement this interface, but do implement java.io.Serializable (which is an empty
“marker interface” that signals that the Java runtime system is permitted to convert objects
implementing it into byte streams). RMI transmits the byte stream over the network, and
deserializes the object on the remote server. One distinguishing feature of RMI is that if the
JVM running on the remote server does not have a local copy of the class that the passed object
is an instance of, RMI can dynamically transmit the class over the network, which is then
loaded into the server JVM. This makes it possible to offload expensive operations to a remote
server without requiring that the server has compile-time knowledge of the tasks it is to execute.

The first version of RMI required the compile-time presence of both client-side and server-
side proxies (called stubs and skeletons, respectively). Developers were expected to generate
proxy implementations using a tool shipped with the Java distribution—rmic, analogous to
a COM or CORBA IDL compiler. Whereas an IDL compiler operates on IDL files, rmic
operates on files containing compiled Java bytecode. As the Java language, as well as the
instruction set of the JVM, already have an interface concept, there is no need for a specialized
interface description language.

As of version 1.2 of Java, server-side proxies are no longer needed. A generic server-side
proxy is part of the platform, and uses reflection to reflectively invoke the methods of the remote
object. Also, as of version 5.0, client-side proxies no longer need to be generated manually—they
are synthesized dynamically (that is, created at runtime), again using reflection. (Note that a
client always accesses a remote object through an interface. Thus, even if the actual client-side
proxy implementation is synthesized at runtime, the client still has compile-time knowledge
of the methods that the remote object makes available, enabling compile-time type checking.)

RMI exemplifies that distributed computing does not need to be complicated. RMI requires
no interface description language, as the platform is already interface-savvy, and thanks to the
pervasive use of runtime type information by the Java platform, it can do without generated
client-side and server-side proxies. This is vastly simpler than the solutions used by COM and
CORBA.

5.5.2 Modularity woes

JAR files are the preferred deployment format for Java libraries. Such files contain compiled
Java bytecode, as well as a “manifest” file holding metadata. JAR files cannot be considered

18In fact, there is a formal Java language binding for CORBA, and Sun’s implementation of Java even comes
with a lightweight ORB, an IDL compiler and naming service (collectively, Java’s CORBA services are known
as “JavaIDL”).

88

5.5. Java

true components, as they have no identity at runtime. All packages that are part of a JAR file
are placed in the same global namespace as packages loaded from a different JAR file.19 This
has subtle implications that serve to illustrate the necessity for components to be identifiable
at runtime.

For simple cases, JAR files work well. Java’s use of packages ensures that two classes or
interfaces that share the same name and are provided by two different libraries can co-exist,
as they are placed in different packages. The system breaks down, however, when an attempt
to load multiple versions of the same JAR file is attempted.

Complex Java projects often have a large number of dependencies, which can number in the
hundreds. A dependency often has dependencies of its own, resulting in complex dependency
graphs. One JAR file may be dependent on a certain version of a library, while another
JAR file is dependent on another version. Java simply attempts to load the first version it
encounters,20 which may or may not be compatible with the JAR file expecting a different
version. Compounding the problem, if the loaded JAR file does not contain a class or interface
that is part of a JAR file that was initially not loaded, Java will attempt to load the desired
class or interface from the latter JAR file. The end result is a toxic mix of incompatible classes
and interfaces, resulting in runtime errors, or worse, unpredictable behavior.

Java provides access specifiers that allow developers to control access to classes, interfaces,
and fields. A class or interface can either be exposed to all other classes running in the same
virtual machine using the public access specifier, or it can be designated package-private,
meaning that a particular type may not be accessed from outside its parent package. It is not,
however, possible to expose a class or interface only to the JAR file in which it resides, which
illustrates another problem with JAR files not having an identity at runtime.21

5.5.3 True Java components

While JAR files cannot in themselves be considered true components, Java does ship with a
proper, if domain-specific, component model in its Enterprise Edition. Enterprise JavaBeans
(EJBs) are hosted by an application server and have access to enterprise services, often by
setting declarative attributes. An EJB entity bean can, for instance, declaratively request that
the application server should handle its database access by transparently storing and loading
its state. (Entity beans represent persistent data typically stored in a relational database
(Mukhar et al. 2005).)

EJBs cannot interfere with each other in the manner described in the previous section
as their containers do have runtime identities. EJBs achieve this using custom class loaders.
Class loaders are Java classes that descend from java.lang.ClassLoader and are responsible
for loading classes and interfaces from compiled bytecode. A typical class loader loads classes

19Packages that house the Java class library and packages that are part of user-installed extensions are
actually part of different namespaces.

20This issue is related to the mechanism used by Java to load classes into a virtual machine, known as class
loaders (discussed on the current page). The application class loader, which is normally responsible for loading
classes that are neither part of the core runtime system nor part of a system extension, consults the classpath
to find classes. The classpath is a delimiter-separated string containing the locations used to find classes, either
directory names or the locations of JAR files. The application class loader is satisfied when it encounters a
directory or JAR file that contains the sought class or interface. Once a class or interface has been found, no
further classpath entries are consulted.

21The common work-around is to define a package named “internal,” and place classes and interfaces that
should not be exposed to the outside world in that package or its subpackages. This informal means of limiting
access to internal types cannot easily be enforced at compile-time, though.

89

5. Ways of the industry

from the file system, but custom class loader can also load classes from, say, in-memory data
structures or over a network. Internally, a Java virtual machine represents a class or interface
using not only its given compile-time name, but also using the class loader responsible for
loading it (Lindholm and Yellin 1999). A Java runtime name thus consists of a pair: its
compile-time name and its defining class loader. This allows a virtual machine to differentiate
between two objects that share the same class and package names but were loaded using two
different class loaders. A class loader is expected to delegate calls to a parent class loader
before it tries to load a class itself. Class loaders thus often form an implicit tree. At the
root of this tree is the “bootstrap” class loader, which loads classes from Java’s core runtime
system. The bootstrap class loader is thus always responsible for loading the definitions of
core classes such as java.lang.Object (from which all classes ultimately descend).

Class loaders are a very useful mechanism on which to build true Java components, and
as class loaders are normally implemented entirely in Java, there is no need to resort to
native code. Corwin et al. (2003) present such a system, MJ, which attempts to solve the two
fundamental problems discussed on page 88. MJ components must list their dependencies
and what packages they provide as part of their metadata. Using custom class loaders, MJ
ensures that dependent types are available (by simply calling on the services of the class loader
associated with the dependent component), and that types that are not explicitly exported
from a given component are not made available to the outside world. (When MJ is used,
the class loaders in the system no longer form a tree; they form a directed acyclic graph, as
class loaders can delegate calls to an arbitrary number of other class loaders, representing
components which the current component is dependent on.)

In industry, the ideas of MJ are best embodied by a popular Java component model
named OSGi. OSGi components are called “bundles,” and are deployed as ordinary JAR files,
with the sole difference being that the manifest file holds additional metadata similar to that
mandated by MJ, such as lists of dependencies and of packages that are exported from the
bundle. As an OSGi bundle is a standard JAR file, it can be loaded both by a specialized
OSGi runtime system (enabling it to be used as a true component), and in the traditional
fashion. OSGi defines a rigid versioning scheme, allowing a bundle to require a specific version
of another bundle, or declaring that it can accept a range of acceptable versions.22

OSGi bills itself as the “dynamic module system for Java,” meaning that bundles can be
loaded and unloaded at runtime. This is important to application servers, which should suffer
as little downtime as possible. The dynamic nature of OSGi makes it possible to install a new
version of a bundle without taking down the server, and without affecting other bundles. To
achieve this, OSGi defines a strict life cycle for bundles.

In contrast to other component models studied, OSGi only attempts to enable software
components that run in-process (that is, bundles that all run in the same virtual machine). A
distributed version is reportedly in the works (Taft 2008).

OSGi bundles adhere perfectly to the definitions of Chapter 1. Bundles are protected
from one another, enabling multiple versions to co-exist, and declare their dependencies
and what they themselves provide declaratively. OSGi is cleanly layered on top of the Java
platform, and as such, OSGi bundles are usable in binary form on any platform for which a
Java implementation exists. A handful of commercial and open source implementations are

22The recognized OSGi “best practice” is not to request that a specific, named bundle be present, but to
import a particular version of a package, making it possible to move packages from one bundle to another
without unduly disturbing dependent bundles (Bartlett 2009:60).

90

5.6. .NET

available. As of the middle of 2009, OSGi is making its way through the Java Community
Process, and may become a standard part of a future version of the Standard Edition of Java.

5.6 .NET

In August 1998, Microsoft shipped version 6.0 of their Java development tool, Visual J++.
This product turned out to be controversial, partly because it allowed developers to very easily
call on the services of the Windows platform, thus violating what Sun saw as one of the key
selling points of the Java platform: its platform-agnosticism. Visual J++ 6.0 was billed as
having “the ease of Java, the power of Windows.” Microsoft saw in Java an innovative new
language, and wanted to leverage the Java language to enable developers to more easily build
Windows applications. A lawsuit was filed by Sun, and Microsoft was eventually forced to
stop developing their Java product (Microsoft 2005; Lohr 1998). In response to these events,
Microsoft developed their own in-house platform .NET, which is reminiscent of the Java
platform, and a new flagship language for .NET, named C#, that has many traits in common
with the Java language.

Anders Hejlsberg, the former architect of Delphi, was the architect behind Visual J++ 6.0.
He went on to become architect of the C# programming language, and a key participant in
the development of the .NET platform. He shared his thoughts on the Java experience in an
interview (Microsoft 2005):

[The Java experience] gave us clarity [...] around creating .NET [...], taking control
of our own destiny, and building a platform where we could truly innovate and
where we could build the stuff that we needed to build for our customers as opposed
to trying to shape a competitor’s platform, which effectively is what we were doing.
[...] The development environment we had on Windows at the time [...] had many
names, COM, OLE, ActiveX, DNA [...]. We kept rebranding the same bucket of
bits. [...] It was [...] a very low-level experience, there were all sorts of... Registry
and GUIDs and HRESULTs and interfaces and stuff you had to deal with. Horribly
complicated. [...] Simplicity was getting lost. [...] Developers were voting with
their feet [and abandoning the Windows platform for the Java platform], so we
were kind of in trouble. [...] There was a lot of handwringing about where do we
go. I think there were two camps, the evolutionaries and the revolutionaries. The
evolutionaries said “we got to fix COM.” [...] It seemed to me a pretty big fix. And
then there were the revolutionaries, and I was pretty firmly in that camp, that
said “we got to build a new development experience, we got to clean up all this
stuff—of course we need to interoperate with it, but we got to have a fresh start.”

5.6.1 Technical foundation

The .NET platform is in many respects similar to the Java platform. The core of .NET is a
stack-based virtual machine called the Common Language Runtime (CLR), which executes
object-savvy bytecode.23 The CLR typically compiles bytecode to native code using a just-in-
time compiler, but there are also provisions for ahead-of-time compilation, which is often used
with embedded systems. Microsoft refers to bytecode as “managed code,” and to machine code

23The instruction set of .NET is formally divided into the “Base Instruction Set” and the “Object Model.”

91

5. Ways of the industry

that runs natively on a CPU as “unmanaged code.” To write low-level managed code, one can
use the Common Intermediate Language (CIL), which is an assembly language that targets
the CLR. Like the JVM, the CLR manages memory automatically through garbage collection,
and natively supports exceptions (although the CLR does not have Java’s distinction between
checked and unchecked exceptions; all are unchecked).

.NET has been standardized as the Common Language Infrastructure (CLI), which has
been implemented by vendors other than Microsoft. Notably, Novell has created the Mono
implementation, which is available for a wider range of platforms than .NET, such as Linux,
various Unix platforms and Apple’s Mac OS X. .NET has a counterpart to the Micro Edition
of Java in the .NET Compact Framework, which is a version of the .NET platform designed to
run on embedded systems, such as cellular phones. Libby and Kent (2009) have done research
on implementing the CLI in hardware for the benefit of embedded systems.

While it is possible for languages other than Java to target the JVM (and many do), .NET
was specifically created to allow programs written in different programming languages to run
on the same virtual machine. By contrast, the JVM was specifically designed for programs
written in the Java programming language. This can be seen in that while both the JVM and
the CLR have explicit support for classes, only the CLR allows methods outside of classes, thus
enabling procedural languages to easily target the CLR.24 Also, a number of specifications are
associated with .NET that enable different languages to interoperate. The Common Type
Specification (CTS) formally defines the type system used by various .NET languages. The
Common Language Specification (CLS) is a subset of the CTS, and is a set of rules that
all languages targeting the CLI should comply with in order to be interoperable with other
CLS-compliant languages (Troelsen 2007).

Visual Basic and C# are Microsoft’s two flagship languages targeting the CLR. Visual Basic
has been retrofitted as a pure .NET language, and does not retain source-level compatibility
with its previous incarnations. C# is in many respects similar to Java, and is an object-
oriented programming language supporting interfaces, single implementation inheritance and
parameterized types (generics). C# does sport some noteworthy features that are not in Java,
though, such as language-level support for properties and lambda expressions. Language-
integrated queries (LINQ) can be used to query databases (instead of including SQL string
literals that are parsed at runtime, as is done in Java and most other languages).

CLR has rich support for runtime metadata, which is accessed programmatically through
reflection. Unlike Java, the type system of the CLR (the CTS) is aware of generics, and
makes this information available through reflection.25 .NET Remoting, a .NET technology
for realizing distributed computing and similar to Java’s RMI, is one of many technologies to
take advantage of reflection. By using metadata available at runtime, .NET Remoting is, like
RMI, able to use dynamically synthesized client-side proxies and generic server-side proxies
instead of requiring users to generate them statically (Rammer and Szpuszta 2005).

24A procedural language can target the JVM by simply implementing procedures as static methods that are
part of an unnamed class.

25Generics are also available in Java, but in order to preserve backwards compatibility, Sun decided to make
them strictly a compile-time tool, and as such, generic type information is not available at runtime. (Java
removes generic type information through a process called “type erasure”).

92

5.6. .NET

5.6.2 Interoperating with native code

When Microsoft designed Visual J++ 6.0, they chose not to implement the Java Native
Interface (JNI), which was (and remains to this day) the means of accessing native code from
Java (and vice versa). Instead, Microsoft opted to implement their own Windows-friendly
solution.

In Java, any method may be declared with the native keyword. Such a method is expected
to be implemented in native code, and is part of a shared library that runs in the address space
of the JVM (and can thus easily crash the JVM, or corrupt its state). JNI mandates that all
native functions follow certain naming conventions, and take JNI-specific arguments. The first
such argument, of type JNIEnv, gives access to the services of the JVM using a dispatch table
(the JNIEnv argument happens to use the same binary memory layout as COM and most
C++ compilers; this solution enables native code to be insulated from the inner workings
of the JVM). Native code must interact with the JVM in order to process an invocation.
This includes converting strings to a format usable by native code, throwing exceptions and
converting local object references to global object references (that the native code can store
for later use, without fear of the garbage collector prematurely collecting them). To use the
services of a native library, a Java developer must manually write a native wrapper for it that
forwards all calls to the native library.

Creating such wrappers is a burdensome task, especially if many native libraries are
used. As Microsoft intended for their version of Java to be a better way of writing Windows
applications, they needed a solution that would make calling on native platform services
almost effortless. Besides introducing their own JNI-like technology (termed the Raw Native
Interface), Microsoft also introduced a technology known as J/Direct to enable Java developers
on Windows to easily make use of Windows services (Eckel 1998).

Native methods that were to use J/Direct were declared with the native keyword. In
contrast to JNI, however, J/Direct methods were preceded by a Java comment with content
that was taken into account by Microsoft’s Java compiler. At a bare minimum, such a comment
had to specify the name of the shared library that was to be loaded. J/Direct then took care
of marshalling all arguments into the format expected by the native code, which was not privy
to the fact that it was called through J/Direct. Hence, native libraries could be used directly,
and no native wrappers had to be written. Special J/Direct directives could be used to handle
callbacks, and to instruct the JVM to marshal strings as wide strings or as strings using
single-byte character sets. Microsoft even provided a ready-made Java package, containing the
Java equivalent to the function prototypes and constants found in the C header files shipped as
part of the Windows software development kit, enabling developers to effortlessly use Windows
services.

Visual J++ 6.0 also featured deep COM integration, enabling Java classes to seamlessly
access COM servers and conversely make Java classes available to native code through COM. To
enable Java code to access COM servers, Microsoft shipped a tool that generated Java bindings
from a type library. The COM objects used from Java were proxies partly implemented
in native code, that marshalled arguments and forwarded calls to the native COM object.
HRESULT return values that indicated failure were transparently converted to Java exceptions.

Java classes were COM-enabled using a tool that directly parsed compiled Java files and
generated a type library, all without involving an interface description language. The generated
COM interfaces could optionally be dual interfaces, enabling both late and very late binding
(thus making it possible to use the Java COM objects from both native code and interpreted

93

5. Ways of the industry

code). Microsoft’s JVM provided COM clients with COM-compatible proxy objects that
marshalled arguments and forwarded calls to Java code.

The Platform Invocation Services of .NET, commonly referred to simply as P/Invoke,
are broadly similar to J/Direct. P/Invoke declarations are not contained in comments, but
in .NET attributes, which are a formalized means of associating metadata with language
constructs (Java “annotations” are roughly equivalent). Microsoft does not ship a .NET
equivalent to the C header files that enable access to Windows functions, meaning that users
must manually author the P/Invoke metadata (Bukovics 2006).

.NET also features deep COM integration, much like that provided by Visual J++ 6.0.
Making COM objects available to .NET involves generating bindings from type libraries. To
call on the services of a COM object, .NET uses a proxy called a Runtime Callable Wrapper,
which handles marshalling and forwarding. Conversely, .NET can expose managed code
through a COM Callable Wrapper, which, again, is a proxy. In its simplest form, .NET
exposes the complete class interfaces of classes (including methods inherited from the base
class, System.Object). It is recommended that interfaces specifically meant to be exposed
through COM are written instead. Again like Visual J++ 6.0, .NET supports both late and
very late binding through COM dual interfaces.

The first versions of .NET enabled the use of enterprise services solely through COM+.
The COM+ support is integrated directly in .NET, and as such, developers do not need
to use COM+ services through COM interfaces. As of this writing, some of the COM+
services are being replaced with pure .NET services, such as those provided by the Windows
Communication Foundation.

5.6.3 True .NET components

In .NET, all managed code is contained in assemblies, which are independent, versioned
entities that explicitly declare their dependencies. A .NET executable file is an assembly with
an entry point, whereas a .NET shared library is an assembly without such an entry point.
An assembly may consist of one or many modules, each of which can be written in separate
languages targeting the CLR. Assemblies can be private or shared; shared assemblies are
placed in the Global Assembly Cache for use by other assemblies (Troelsen 2007:347).

Assemblies typically contain only managed code, but may also be “mixed,” meaning
that they contain both managed and unmanaged code. Such assemblies can be produced by
Microsoft’s C++ compiler. A C++ class may be written using both managed and unmanaged
code, making it particularly easy for managed code to interoperate with unmanaged code,
without the use of P/Invoke or the COM interoperability services.

Unlike an OSGi bundle, there is no metadata on the level of an assembly that declares
which types should be visible to other assemblies. .NET does provide such metadata, but as
normal access specifiers. In C#, types can either be declared as internal or public. Internal
types, which is the default access specifier if none is given explicitly, are not visible outside of
the defining assembly.

An assembly cannot, unlike an OSGi bundle, be loaded and unloaded dynamically. However,
assemblies are contained in so-called “app domains,” which do have this feature. If desired,
an app domain can house only one assembly, in effect making it possible to load and unload
singular assemblies.

With assemblies, .NET features true components as part of the core platform.

94

CHAPTER 6
The (Sony) Ericsson way

In early 2001, Sony and Ericsson announced plans to merge their respective cellular phone
businesses. Sony and Ericsson had both struggled in the marketplace, and it was felt that
combining Ericsson’s expertise in telecommunications with Sony’s experience in consumer
electronics would create a stronger business than either Sony or Ericsson could manage on
its own. The joint venture, equally owned by Sony and Ericsson and named Sony Ericsson,
began operations on October 1, 2001.

The hardware and software platform used in Ericsson’s phones was chosen as the base on
which to build consumer phones. As a result, Ericsson created a subsidiary, Ericsson Mobile
Platforms, to license its cellular phone technology to a range of companies, including Sony
Ericsson (Kornby 2005). As of February 2009, this business is part of a company named
ST-Ericsson.

When Ericsson’s cellular phone business became Ericsson Mobile Platforms and Sony
Ericsson, the cellular phone software had to be split into two halves, one focusing on core
services and the other on user-facing applications and services higher up in the system. Ericsson
kept the parts essential to offering a complete cellular phone platform while Sony Ericsson
assimilated the rest.

Separating these two halves necessitated the creation of a formalized barrier between the
two, severing the direct ties between user-facing applications and the services offered by the
cellular phone platform. To facilitate this, an object model was created as part of the new
Ericsson Component Model (ECM). This object model came with support for dynamic dispatch,
enabling freestanding interfaces and thus the separation of interface and implementation.

The formalized barrier was built using ECM, and was named the Open Platform API
(OPA). To this day, OPA is used to access platform functionality, and is organized in a number
of categories, each representing an aspect of the platform. Through OPA, developers interact
with the ST-Ericsson platform, enabling activities such as initiating phone calls, sending text
messages, playing MP3 audio files and rendering 3D graphics. OPA also serves as the interface
to the underlying real-time operating system.

95

6. The (Sony) Ericsson way

6.1 The Ericsson Component Model

The object model of ECM is based on that of COM (Ghosh et al. 2005). ECM defines
instantiable classes, which can implement an arbitrary number of interfaces, and when
instantiated form objects.1 The memory layout of interfaces is almost identical to that used by
COM—the binary standard of the ECM object model is thus concerned with the in-memory
representation of interfaces, which use dispatch tables to realize late binding. Figure 6.1
depicts the memory layout of ECM interfaces. Very late binding is not supported, and only
minimal runtime type information is kept (enabling interface navigation).

Interfaces and classes are assigned runtime names in the form of UUIDs. Interfaces may
extend one other interface, with the exception of IRoot, which is the root of the interface
hierarchy.2 IRoot is identical to COM’s IUnknown, and ECM thus uses reference counting to
manage the lifetime of objects and supports interface navigation. Errors are signaled through
return values—the equivalent to COM’s HRESULT return type is the RVoid type, which contains
16 bits of error information divided into a number of fields. The remaining 16 bits may be
used to transmit actual return values in addition to the error information—the RSel type is
used to return integer values and the RBool type is used to return boolean values. Return
values are typically transmitted using output arguments, though.

ECM uses factories to instantiate objects, which are always allocated on the heap. A
mapping between class UUIDs and addresses of factory functions is maintained by a data
store, which is consulted when objects are instantiated. (ECM also supports “private” classes,
whose factories are not registered with the data store, and are instantiated by directly calling
the factory function of the class.) The ECM runtime system is accessed through a standard
ECM interface, IShell, an implementation of which is available at all times. IShell is most
commonly used to instantiate objects, through IShell::CreateInstance().

ECM comes with an interface description language, known as EIDL, whose syntax is similar
to the IDL dialect used with COM, but with ECM-specific keywords. EIDL defines a number
of standard types that can be used with ECM classes. ST-Ericsson’s software development kit
ships with an IDL compiler that for a particular interface can be used to generate C bindings
and a “skeleton” C implementation. The latter is a generated class with empty operation
bodies, which developers can use as a convenient starting-point when authoring new classes.
ECM’s C binding is similar to the code presented in Chapter 4.

Classes and arbitrary resource files may be part of application suites, which can be built
and deployed separately from other suites. They may be installed and uninstalled at runtime,
and are made part of a running system through dynamic linking. Application suites are
packaged as Native Archive (NAR) files.

From a technical perspective, application suites are in some respects the software com-
ponents of the ST-Ericsson platform. However, they were not built to support a thriving
component ecosystem of third-party components that are composed to build component-based
software. Rather, application suites serve as the shared library mechanism of the platform,

1ST-Ericsson refers to classes as “components,” and to objects as “component instances,” but acknowledges
in the platform documentation that “components facilitate an object-based development paradigm.” Also, the
OPA documentation occasionally refers to “component instances” as “objects.” For consistency, this thesis
refers to these ECM entities as classes and objects, reserving the “component” word for entities that are in
most respects compatible with the definitions of Chapter 1.

2ECM also includes IStaticRoot, which is the root interface of an alternative interface hierarchy.
IStaticRoot interfaces essentially group together procedural operations, as these interfaces can only have one
implementation.

96

6.2. Enter Sony Ericsson

Pointer to dispatch table
Dispatch tableInterface node

Pointer to object
Client

Pointer to QueryInterface impl.

Pointer to operation n impl.

Pointer to operation 4 impl.
Pointer to Release implementation
Pointer to AddRef implementation

...

...

...

...

...

...

Pointer to interface metadata ...

Figure 6.1 Memory layout of ECM/ECMX interfaces

enabling short build times and a way of preventing unwanted dependencies between suites.
ST-Ericsson offers its customers a choice between linking their application suites dynam-

ically with the platform, as described above, and of linking statically to form a monolith
containing both the customer code and the platform. If the latter option is used, ECM is
effectively reduced from a combined component and object model to only an object model.

6.2 Enter Sony Ericsson
In the first few years of the new millennium, cellular phone manufacturers like Sony Ericsson
added features to their products at a furious pace. The bulky communications devices of
the middle of the 1990s developed into slender all-purpose devices, with high-resolution color
displays, three-dimensional downloadable games, built-in cameras and music players.

It is no surprise, then, that Sony Ericsson’s codebase ballooned in size and complexity. At
the time when Ericsson and Sony joined forces, most of the codebase was written in C, and
consisted of a mixture of user-facing applications, services running in their own processes and
libraries running in the caller’s context. Code running in different processes communicated
using a technology requiring developers to handle marshalling manually.3

In ECM, Sony Ericsson saw the potential to modularize its codebase by making use of
ECM’s object model for internal projects. However, ECM was found wanting in some areas,
prompting Sony Ericsson to devise an extended version, named ECM Extended, or ECMX
for short.4 A number of features have been added to ECMX over the years, including the
ability to generate proxies for inter-process communication, a Java language binding, single
implementation inheritance, execution tracing and a declarative means of ensuring thread-

3Sony Ericsson sells phones that run a variety of operating systems, including Symbian, Windows Mobile
and the Linux-based Android. Network access is typically provided by a second chip from ST-Ericsson running
Enea’s OSE real-time operating system. The work related to Sony Ericsson presented in this thesis invariably
concerns the company’s so-called “central” phones, which make up the bulk of sales and are primarily developed
in Lund, Sweden. The application software of these phones either runs directly on ST-Ericsson’s network access
CPU, or on a dedicated CPU also running OSE.

4The ECMX name is rarely used within Sony Ericsson, and few developers recognize it. Instead, the
technology is simply referred to as “IDL.” This thesis uses the ECMX name to avoid confusion with other
interface description languages and to make the ECM heritage clear.

97

6. The (Sony) Ericsson way

safety.5 The first two features are discussed at some length in this section, and execution
tracing is the subject of Chapter 7.

ECM and ECMX remain binary compatible, enabling an ECMX class to implement an
OPA outgoing interface. However, Sony Ericsson’s IDL dialect is no longer fully compatible
with EIDL, as ST-Ericsson continued to add new features to its version after ECMX was born.
There are plans to alleviate this situation through closer cooperation between Sony Ericsson
and ST-Ericsson, with the desired outcome of only having one IDL dialect, one IDL compiler,
and one ECM/ECMX runtime system.

Sony Ericsson has traditionally elected to link its software statically with ST-Ericsson’s
platform. There have been efforts in recent years to separate the software into dynamically
linkable modules, primarily to reduce build times and to ensure that there are no unwanted
dependencies between modules. This effort is developed in-house, and does not make use of
ST-Ericsson’s application suites. Dynamically linked modules are required to expose their
functionality exclusively through IDL interfaces, thus using the indirection of dispatch tables
not only to facilitate dynamic dispatch, but also dynamic linking (as discussed on page 74).

Like ST-Ericsson’s application suites, Sony Ericsson’s modules in some respects qualify
as software components, but only from a technical point of view, as they are not intended
to foster a vibrant component ecosystem comprised of third-party components (though they
would likely make a good base on which to build a component model).

Sony Ericsson does make use of third-party libraries in its phones (including the Access
NetFront web browser and Nuance’s T9 predictive text input software), but these libraries are
typically shipped by their vendors as pre-compiled libraries bundled with C header files or as
(often obfuscated) C source code. Integrating third-party code in this fashion is expensive and
labor-intensive, as “glue code” must often be written that gives the third-party code access
to the native environment (such as drawing to the screen), or that replaces libraries bundled
with the third-party software with calls to pre-existing code with equivalent functionality (a
practice which helps cut down on code size).

Sony Ericsson’s phones offer one environment, though, that allows for separately deployed
third-party extensions that are loaded at runtime and have access to a rich object-oriented
library: Java applications. These applications have many of the properties of software
components, including being written to vendor-agnostic standards.6 As applications, though,
they must be considered too coarse-grained to be considered true components, much like
applications for desktop computers.

6.2.1 Inter-process communication

As early as 1976, White suggested the use of remote procedures to facilitate out-of-process calls,
instead of requiring developers to directly send a data stream compatible with a certain network
protocol. White’s proposal called for a standardized type system used for marshalling, a choice
between synchronous and asynchronous calls, and for modifying compilers “to provide minor
variants of their normal procedure-calling constructs for addressing remote procedures” (thus
generating code for calling remote procedures). The Open Group’s Distributed Computing

5“Thread-safety” is somewhat of a misnomer when applied to Sony Ericsson’s system, as the main use
of this declarative attribute is to protect code from concurrent access by multiple processes. The memory
management unit (MMU) in Sony Ericsson’s OSE-based products is typically not used to protect the memory
owned by one process from tampering by other processes, though there are exceptions.

6Java applications can often elect to use proprietary extensions, though.

98

6.2. Enter Sony Ericsson

Environment (DCE) introduced an interface description language from which procedural
proxies were generated, for use with inter-process and inter-machine communication. Before
DCE, developers often wrote tools that generated such proxies directly from C header files
(Hludzinski 1998).7 When Sony Ericsson created a new IDL compiler that could generate
proxies for inter-process communication automatically, there was thus ample precedent for
this effort.

The proxies in ECMX work similarly to proxies in other systems. Once set up, a client-side
proxy masquerades as the remote object, and passes all invocations to the server-side proxy,
which invokes the call on the true remote object. The server-side proxy ensures that the
return value is transmitted back to the client-side proxy, which returns this value to the client.
ECMX does not support a concept similar to COM’s in-process handlers, which can elect to
handle some operations locally in order to boost performance. (A client-side proxy is simply
called a “proxy” in ECMX, and a server-side proxy is called a “stub,” which is consistent with
the naming convention used by COM.)

Clients normally need not concern themselves with the mechanics of setting up proxies.
A server always provides an object, running in the client’s context, whose sole purpose is to
set up the connection and provide a client-side proxy. Such objects are called managers. A
manager encapsulates all knowledge required to set up a connection with the server, including
the process identifier of the server process.

As part of the build process, proxy classes are generated by the IDL compiler for all
interfaces that should be available across process boundaries. (There is not enough type
information available at runtime to dynamically synthesize client-side proxies and use generic
server-side proxies, a technique exemplified by Java’s RMI and .NET Remoting, which are
described in Chapter 5.8) There is only one client-side proxy class and one server-side proxy
class per interface, but every new connection between a client and a server gets freshly created
client-side and server-side proxy instances.

In OPA, every process is associated with an object implementing the IApplication
interface. An OPA process can either elect to process messages sent from other processes itself,
or it can let the system handle this aspect by deferring message handling to a system-provided
message loop. This message loop routes messages not addressed to a specific recipient to
the IApplication::OnReceivedMsg() operation of the object associated with the process.
Messages processed by the system message loop can also be addressed to a specific handler,
which is an object implementing the IHandler interface, or one of its descendants. Such
messages are associated with OPA sessions. The system message loop routes messages by
consulting a per-process table mapping session identifiers to handler objects. Server-side
proxies are OPA handlers, and the system message loop thus routes messages sent from
client-side proxies directly to the appropriate server-side proxies.

The code for setting up and tearing down proxy connections is part of the ECMX runtime
system. When a connection is set up from a client context, a message is sent to the server

7This heritage may go some way toward explaining why many interface description languages, including
those used by DCE, COM and ECM/ECMX, are reminiscent of C.

8Space is at a premium in most embedded systems, and metadata in the form of runtime-accessible type
information does occupy space. However, so does generated code, especially highly repetitive, verbose code
typical of proxies for inter-process communication. Including more runtime type information makes it possible
to use domain-agnostic system classes and runtime-synthesized objects in lieu of automatically generated classes.
This approach may actually use less space overall, and has other benefits as well, such as enabling very late
binding and frameworks that rely on naming conventions.

99

6. The (Sony) Ericsson way

asking it to create a session linked to a newly created server-side proxy. The server sends a
message back informing the client of the session identifier, which then creates a client-side
proxy, initialized with the session identifier and the process identifier of the server. When a
client-side proxy determines that there are no live references to it, it destroys itself, and asks the
server-side proxy to do likewise. (Proxies are reference-counted like all other ECMX objects.)

ECMX does not use a formalized wire format. Primitive arguments to an operation, such
as integers, are serialized by the client-side proxy simply by putting them in a C structure
and copying its contents byte-for-byte into a message. The server-side proxy uses the same C
structure to deserialize the primitive arguments.9 Pointers to arrays and strings are marshaled
by copying their contents into the message. (Their runtime size must be given as a separate
argument, and this argument must be designated as such in the IDL file.10)

Interface references can also be marshalled, and are always passed by reference. A server
receiving an interface reference accesses the client-side object through proxies in the reverse
direction, which are automatically set up by the generated code (illustrated in Figure 2.2
on page 18). If a process A sends a local interface reference to a process B, which sends
this interface reference to both processes C and A, process C will receive a client-side proxy
communicating directly with a server-side proxy in process A, and process A will receive a
direct reference to its local interface reference.

ECMX supports both synchronous and asynchronous invocation semantics. A synchronous
call is realized by blocking the client process until the server sends a response. In common with
other similar systems, such calls are several orders of magnitude slower than direct function
calls (an average response time of 350 microseconds, which includes marshalling and context
switches, has been observed using an in-circuit debugger). Asynchronous operations allow the
client to continue executing while the server processes the request. Passing interface references
to a remote object proves especially useful when using asynchronous operations, as it gives
the server an opportunity to respond. (There is a pattern for subscriptions, which are used by
clients that wish to subscribe to events from a server, such as file system changes.)

Synchronous operations, while convenient, pose a problem in the form of deadlocks (as in
most other systems). A process invoking a synchronous operation on a client-side proxy is
blocked, and will only resume execution after a response message has been received. If the
target process is blocked waiting for a reply from the first process, neither process will resume
execution. (An arbitrary number of processes can be involved in a deadlock, if the target
process is only indirectly waiting for a response from the first process.)

Deadlocks could be avoided by electing to consider arbitrary messages while awaiting a
reply, and not just the expected return message. This is not done for a few reasons, chief among
them the desire to avoid reentrancy issues. A client invoking a synchronous operation on an
object is not necessarily in a consistent state at the time of the invocation, and considering
arbitrary messages could thus lead to unexpected behavior.

The sizes of the call stacks in Sony Ericsson’s system are fixed, making it possible to
write beyond their confines. Doing so typically results in unintended and likely erroneous
behavior, which makes it imperative that stack growth is kept under control. Acting on
arbitrary messages while waiting for a response message to a synchronous request would risk
writing past the end of the call stack of the currently executing process.

9This is only true for classes written in native code. Remote objects written in Java use server-side proxies
mostly written in Java. See section 6.2.2.

10Null-terminated strings need no argument specifying their size, as the runtime system is capable of
gathering this information from the string itself.

100

6.2. Enter Sony Ericsson

6.2.2 Java binding

Sony Ericsson’s Java environment allows independently developed applications and games
to run on its cellular phones. This environment supports the Connected Limited Device
Configuration (CLDC) of the Micro Edition of Java, as well as its Mobile Information Device
Profile (MIDP). Sony Ericsson also supports a large number of supplemental specifications, in
the form of Java Standardization Requests (JSRs).

In addition to allowing users to add software to their own devices, the Java environment
allows Sony Ericsson itself to develop applications and related functionality in Java. Having a
standardized application platform also makes it possible to outsource development to other
development organizations. At the 2009 JavaOne conference, Sony Ericsson stated that all
internal application development will be done in Java in the future (Sun Microsystems 2009).

In order to support internal Java development, there must be a way to access native
functionality that goes beyond that offered by the vendor-neutral Java interfaces. A Java
binding for ECMX exists for this purpose, which is not only used by Sony Ericsson’s applications,
but also by some of the company’s JSR implementations.

All Java applications in Sony Ericsson’s system run in a specialized process, which can
run multiple applications simultaneously (it includes an internal scheduler that ensures that
Java applications get an equal share of the host’s resources). The Java binding enables
Java applications to access native services that offer IDL interfaces. Java applications can
pass outgoing interface references to operations of native objects, and can thus be notified
when events occur, or request information from native objects asynchronously (as well as
synchronously). Aside from calling Java objects through outgoing interfaces, native code
cannot call on the services of Java objects—all interactions between native and Java code
must thus be initiated from Java. Also, while native code can execute in the Java process,
Java code always executes in the Java process.

The IDL compiler strives to create Java code that fits in with its environment. RVoid
return values that signal errors give rise to exceptions, output arguments are mapped to true
return values11 and ECMX types are mapped to the most appropriate Java type—ECMX
interfaces are mapped to Java interfaces and pointers to characters are mapped to Java
String objects, for instance. Java developers need not concern themselves with the IShell
interface—ECMX objects are instantiated using static methods of generated Java classes that
correspond to ECMX classes (there is one static factory method per interface implemented
by an ECMX class). Nor do Java developers need to handle reference counting—the system
automatically adds a reference to the native object when the Java object representing it is
created, and removes it when the Java object is collected by the garbage collector.

Native ECMX objects are represented by Java proxy objects, which implement the generated
Java interfaces that correspond to IDL interfaces. A Java proxy object maintains its link to
the native object by including its address as part of its instance data. A simple way to enable
these proxy objects to call on the services of the native ECMX objects would be to mark the
Java methods corresponding to ECMX operations as native, and generate C code performing
the call at build-time.

Presumably for reasons of space-efficiency, Sony Ericsson instead opts to handle all such
calls with a single native function (that is part of the ECMX runtime system). The Java proxy

11Multiple output arguments are permissible in the IDL dialect used by ECMX but pose problems for
the Java binding (though they are supported). As a result, Sony Ericsson’s IDL guidelines warn against this
construct.

101

6. The (Sony) Ericsson way

objects package all arguments in a format easily digestible by this function, which converts
them to the format expected by native objects (using the foreign function interface of the Java
virtual machine). As the native function does not have compile-time knowledge of the call
to invoke, it must invoke the call using code that is call-agnostic, which is not possible in C.
Hence, this part is written in architecture-specific assembly code, which manually pushes a
stack frame containing the arguments onto the call stack, and jumps to the implementation of
the native operation. If the native object executes in the client’s context, control is passed
directly to the native object, executing in the Java process. If the native object runs in a
different process, the object that control is passed to is a client-side proxy object that forwards
the call to a server-side proxy object.

Enabling Java code to be called from native code is straight-forward, as Java code always
runs in the Java process. Had it been possible to run Java code in the caller’s native process,
outside of the Java process, an ECMX object would have had to be synthesized at runtime,
with an implementation forwarding all calls to Java using the foreign function interface of the
Java virtual machine (as suggested in section 5.4.1). As Java code is restricted to the Java
process, all Java calls from native processes are realized using inter-process communication.
The native process invokes operations on a native ECMX object, a client-side proxy, which
sends messages to the Java process.

The Java process runs its own message loop and can, with the help of the ECMX runtime
system, route messages directly to Java objects—handlers—that have previously expressed an
interest in handling certain messages. The server-side proxy that receives messages sent by
a native client-side proxy is thus written in Java, and marshals arguments with the help of
native functions in the ECMX runtime system, after which it invokes the call on the target
Java object. The ability of the Java process message loop to forward messages directly to
handlers is analogous to what the OPA message loop does for native processes.

102

CHAPTER 7
Implementing interception

Declarative programming is commonly understood to be concerned with telling the computer
what to do, and not how it should go about doing it. Imperative programming, on the
other hand, entails writing statements that inform the computer of the exact steps needed to
accomplish a certain task. It is becoming increasingly common to mix imperative programming
with declarative attributes. Such programs are at their heart still imperative, but certain
aspects of them are described declaratively.

Component technology, especially as used in enterprise settings, has been at the forefront of
this movement. Many component models enable programmers or administrators to configure
components declaratively, using either custom metadata written in the programming language
that the component is implemented in, specialized tools for administrators or separate config-
uration files (often written in an XML-based language). Describing an aspect declaratively
enables a runtime environment to provide services that would otherwise have to be called
upon manually. This is especially useful for enterprise software, that would otherwise have
to include error-prone and repetitive code. Modern component models enable many of the
services enumerated in section 1.7 through declarative attributes.

One aspect that is commonly expressed using declarative attributes is threading. An
object that keeps no state outside of the arguments its operations receive, and is not otherwise
dependent on globally accessible resources, is both reentrant and thread-safe, and can be used
concurrently by several threads with no ill effects. An object that is not reentrant may ensure
that it is safe to access from multiple concurrently executing threads by keeping its state in
a data store specific to the currently executing thread (so-called thread-local storage). Some
objects are inherently not thread-safe, and it is vital that only one thread at a time is allowed
to enter their operation bodies. The classic way to achieve the latter is to manually ensure
that threads wait their turn, using a construct such as a counting semaphore. A declarative
attribute related to threading enables a developer to state whether an object is thread-safe,
and rely on the component model implementation to enforce the desired threading policy.

COM, for instance, subdivides a process into apartments, which are concurrency boundaries
that implement different threading policies. Objects belong to apartments that cater to their
threading characteristics. COM ensures that only one call at a time reaches a non-thread-
safe object by insisting that inter-apartment calls are made using proxies (thus serializing
invocations). As a result, calls to non-thread-safe objects are converted to messages, which are

103

7. Implementing interception

put in a message queue to be inspected at the leisure of the thread servicing the non-thread-safe
objects. Only one thread is allowed in an apartment that houses non-thread-safe objects
(Prosise 2001).

Database transactions are also a popular target for declarative attributes. Instead of
manually having to commit or roll back a transaction, an object that is part of a context
that participates in a transaction can have the component model implementation perform
this service for it—committing the transaction if no exception is thrown, and rolling it back
otherwise. Component model implementations are typically able to manage transactions
that span multiple database servers. Microsoft introduced their Microsoft Transaction Server
(MTS) product, built on top of COM, to provide services such as transaction processing to
components running in its application server. MTS was later merged with COM to form
COM+. Declarative transaction processing is provided by many other environments for the
enterprise, such as CORBA, .NET, and the Enterprise Edition of the Java platform.

Component models provide these services by intercepting calls to objects. When a call
has been intercepted, the component model implementation executes code specific to the
requested service before passing control to the target object, if such access has not been
barred by a security service. Code may also be executed after the commencement of a call
(for instance, to commit a transaction if no exception has been thrown). This mechanism is
similar to aspect-oriented programming in that the services provided by component models
can be likened to aspects.

7.1 Interception practices

Intercepting calls to statically bound native functions generally involves patching code at
runtime, in much the same way software debuggers catch control breakpoints.1 Hunt and
Scott (1999) suggest moving the first few instructions at the start of an intercepted function to
a “trampoline,” and replacing them with a jump instruction which transfers execution to the
trampoline. This code can take any actions it desires before executing the copied instructions
from the original function and transferring execution back to the remainder of it. Hunt and
Scott suggest intercepting the return call by overwriting the return address on the call stack,
and storing this value in thread-local storage for later reference.

Due to the characteristics of the component technology studied in this work, interception
can be implemented in ways that do not involve patching existing code at runtime. This is
especially beneficial for embedded systems that may run code directly from read-only or flash
memory, and may thus not allow for the runtime modification of code. Component models
that mandate the use of runtime software to invoke operations can implement interception
trivially. A CORBA ORB, for instance, allows interceptors to register with it, and ensures that
they are invoked when calls are made (Schmidt and Vinoski 2003). Platforms based on virtual
machines, such as Java and .NET, can easily implement interception, as the “machines” they
target are software constructs (unless ahead-of-time compilation to native code is employed).
The Enterprise Edition of Java, though, elects to implement interception by requiring that
Enterprise JavaBeans are accessed only through an explicit intermediary that invokes services;
clients are thus under no pretense that they are communicating directly with the target object
(Szyperski et al. 2002:310).

1Calls to shared library functions are easier to intercept as they typically go through a jump table which
can be patched instead of the code itself. The one caveat is that this only works for implicit runtime linking.

104

7.1. Interception practices

Component models based on binary standards, such as COM, allow objects to communicate
directly without the use of a mediating runtime system, and must therefore use different means
to realize interception. Due to the universal use of dynamic dispatch by the component models
considered in this thesis, this can be done without patching code at runtime, as dynamic
dispatch implies that binding to an implementation is done at runtime. The implementation
may thus not be the true target object, but a wrapper that forwards calls and ensures that
the services provided by the component model are invoked before and after the call to the
target object is made. (Such a wrapper object is also free not to forward requests, at its own
discretion.)

The simplest way to achieve this scheme is arguably to statically generate wrapper classes,
in much the same way that proxy classes are generated at build-time in Sony Ericsson’s ECMX
system. The mechanism used to instantiate objects needs to be wrapper-savvy and return
a wrapper object if one is needed. However, generating wrapper classes at build-time adds
unnecessary code bloat, which can be avoided by synthesizing wrapper objects at runtime.

Brown (1999a,b) does just this by introducing a generic wrapper that can wrap any
object, and allows for the execution of arbitrary code before and after the operations of the
target object are invoked. This generic wrapper is interesting in that it does not require type
information to be available at runtime (which also means that services cannot usefully process
arguments given to operations). It manages this feat by using a domain-agnostic dispatch
table, whose functions delegate calls to a single generic function that dispatches the call to
the original object and allows services to run. The only information needed by this generic
function is the offset into the dispatch table, which the functions pointed to by the generic
dispatch table helpfully push onto the call stack before invoking the generic function. (By
necessity, all this code must be written in assembly language.) The generic wrapper intercepts
return calls from the target object by overwriting the return address in the stack frame.

The one weakness of the generic wrapper is that interceptors cannot prevent an invocation
from propagating to the target object, which is due to the calling convention used by COM
on 32-bit systems—stdcall. This calling convention requires the receiver of calls to adjust
the stack pointer. As a result, the interceptor must let all invocations propagate so that the
receiver can adjust the stack pointer, as it cannot do this on its own due to lack of type
information. Incidentally, this is not an issue on 64-bit Windows systems, as the one universal
calling convention dictates that the caller adjusts the stack pointer.

Brown’s generic wrapper must be explicitly instantiated at runtime by users. By contrast,
wrappers are automatically used by the COM-based interception system devised by Hunt and
Scott (1999). This is realized by intercepting all object-instantiation calls to COM’s shared
library, and returning wrappers instead of the sought objects. These functions are intercepted
by patching parts of the COM runtime system, as described on the preceding page. Arbitrary
services may be implemented on top of this system.

Microsoft Transaction Server uses a similar system, but allows only for system-provided
services. It ensures that its wrappers are used, not by patching COM’s object-instantiation
functions, but by modifying the Registry, which normally associates classes with the files that
house them. These modifications ensure that a component provided by MTS is identified as
the file housing classes of interest to MTS. It maintains an alternative data store containing
the real file names, thereby ensuring that its wrappers can instantiate the true target objects
when they are created. This data store also contains information on what services should
be provided to objects. Developers must take care not to return a direct reference to an
MTS object, as doing so circumvents the interception system; all external invocations must go

105

7. Implementing interception

through wrappers (Pattison 2000).
With the release of Windows 2000, Microsoft brought a number of improvements to COM

in the form of COM+. The most significant change was merging the functionality of MTS with
COM. As a result, COM gained an application server as well as enterprise services configured
using declarative attributes and realized using interception. Whereas MTS had been layered
strictly on top of COM, COM+ integrated the enterprise features directly.

In COM+, all objects reside in contexts, which themselves are part of apartments. Objects
that are similarly configured may be part of the same context, in which case they are able
to access one another directly. Objects that are part of different contexts access one another
through proxies, which act as the wrappers that allow COM+ to intercept invocations. All
object references are specific to the context in which it was created—sharing an object reference
with an object in a different context prevents COM+ from intercepting calls (Box 1999).

Like MTS, COM+ maintains a data store separate from the Registry to store the declarative
attributes of classes. Unlike MTS, it does not need to modify the Registry to make it point to
COM+ wrappers, as the COM+ runtime system is service-savvy. With COM+, interception
has been integrated directly with COM, simplifying the technology significantly.

7.2 Implementing execution tracing at Sony Ericsson

Execution tracing allows developers and administrators to monitor the runtime behavior of
programs. Some tracing facilities monitor some or all of the actions taken by the program for
a limited time, while others allow developers to directly or indirectly insert tracepoints into
the program code. When encountered at runtime, they collect information for later perusal
or let the user know that the tracepoint has been encountered (say, by writing to a file or to
standard output). Tracing is notably different from debugging, where breakpoints stop the
execution of the program.

There are many examples of trace facilities in industry. In their simplest form, developers
manually add “print statements” to their programs, often at the start and end of functions
or methods.2 The ltrace and strace programs, that are often part of Linux distributions,
print information to standard output when the instrumented program calls functions in shared
libraries and invokes system calls, respectively. For embedded systems, in-circuit debuggers
can often generate precise traces of all activity of an embedded processor, which coupled
with metadata emitted by the linker can yield insights into the system behavior. Emulators,
such as QEMU, often have facilities to generate traces, which they can easily do as they have
complete control of the execution environment.

A prominent tracing facility in industry is DTrace, by Sun Microsystems. It allows
developers to run scripts that collect data when tracepoints are encountered, and supports
both kernel-mode and user-mode tracing. DTrace tracepoints can be enabled and disabled
at runtime. Most disabled tracepoints have no performance cost, which DTrace realizes by
rewriting code at runtime in much the same way as described on page 104. Scripts are designed
to be safe to run even in a production system, and are therefore written for a “safe” virtual
machine. An example of this safety property is that the instruction set of the virtual machine
only allows forward jumps, making constructs such as non-terminating loops (and indeed any
loops) impossible to express (Cantrill et al. 2004).

2Some compilers can automate this, by calling pre-defined functions whenever a function or method body
is entered or exited. GNU’s GCC, for instance, provides the -finstrument-functions option for this purpose.

106

7.2. Implementing execution tracing at Sony Ericsson

Listing 7.1 Excerpt from a sample trace file
C98487__2c434f7434124CJPEGImageFactory__
E98487__2c434f7434200CJPEGImageFactory_IUIImageFileFactory_CreateImage
C98487__2c56cc7c34264CJPEGImage__
L98487__2c434f7434404CJPEGImageFactory_IUIImageFileFactory_CreateImage
D98487__2c434f7434436CJPEGImageFactory__
E98487__2c56cc7c34484CJPEGImage_IUIImage_GetDimensions
L98487__2c56cc7c34528CJPEGImage_IUIImage_GetDimensions
E98487__2c56cc7c34576CJPEGImage_IUIImageJPEGSettings_HasThumbnail
L98487__2c56cc7c34668CJPEGImage_IUIImageJPEGSettings_HasThumbnail

A simple execution tracing facility for ECMX objects, realized using code interception,
has been implemented as part of this thesis work. Developers select the classes whose objects
should be traced before building the product, and can easily select all classes that belong to a
particular module, all classes whose names match a certain pattern, or even all classes present
in the system.

The instantiation and destruction of objects, as well as all occurrences of code entering
and leaving their operation bodies, are written to a human-readable trace file that if possible
resides on an external memory card (meaning that its size is only limited to the capacity of
the memory card). Entries in the trace file include a timestamp and the name of the class,
and for entries that record code entering or leaving operations, the name of the interface
and operation. Crucially for debugging calls involving multiple processes, entries also include
the process identifier of the currently running process. Operations belonging to proxies are
specially identified, and such entries also include the process identifier of the process on the
receiving end.

Listing 7.1 contains a heavily abridged version of a trace file captured at Sony Ericsson.
Entries in the trace file, which correspond to lines, are recognized by a finite automaton that
corresponds to the following regular expression (Perl syntax):3

[CDELPAS]\d+_\d*_\w{8}\d+[\w\d]+_[\w\d]*_[\w\d]*

The first character identifies the type of the entry. C indicates that a class has been
instantiated and D that an object has been destroyed. E signifies that an operation body
has been entered and L that one has been left. P denotes that the body of a synchronous
operation that is part of a client-side proxy has been entered and A likewise for the body of
an asynchronous operation. Finally, S signifies that the body of an operation belonging to a
server-side proxy has been entered (a “stub,” in Sony Ericsson parlance).

The number that follows is the process identifier of the currently running process. Entries
that reflect proxy operations (identified by P, A or S) next include the process identifier of the
receiving process (this part is blank for the other entry types). The hexadecimal number that

3While a finite automaton corresponding to this regular expression successfully matches entries in trace
files, the expression is too lenient in that it recognizes some lines that are not quite proper. In particular, object
identifiers must be hexadecimal numbers and not arbitrary strings, and class and interface identifiers, as well as
names of operations, must not start with a number. A stricter, but less readable, regular expression follows:
[CDELPAS]\d+_\d*_[0-9A-Fa-f]{8}\d+(?:\w[\w\d]*)_(?:\w[\w\d]*)?_(?:\w[\w\d]*)?

107

7. Implementing interception

<<create>>

IUIImageFileFactory::CreateImage()

IUIImage::GetDimensions()

IUIImageJPEGSettings::HasThumbnail()

:CJPEGImageFactory

:CJPEGImage
<<create>>

Figure 7.1 UML sequence diagram generated from a sample trace file excerpt

follows uniquely identifies the object that the entry refers to, and is followed by a timestamp.4
The next string is the compile-time name of the class. The two remaining strings are blank
for entries that reflect object instantiation or destruction, but are otherwise the compile-time
name of the interface that the called operation belongs to, followed by the name of the called
operation.

Also as part of this thesis work, a tool has been written that infers a UML interaction
sequence diagram from a trace file. Figure 7.1 shows the (lightly edited) sequence diagram
generated from the trace file of Listing 7.1.5

This tracing facility is useful for debugging all object interactions, but especially those
that cross process boundaries. Entries for proxy operations include the process identifiers of

4The object identifier can be any number that uniquely identifies an object, and the only constraint put
upon the timestamp is that the higher the number, the later the event. In the current implementation, the
object identifier is simply the address of the instance data of the object, and the timestamp is a number specific
to the underlying operating system that reflects the time passed since the system was started.

5The sequence diagram of Figure 7.1 has been slightly altered to make it consistent with the visual style of
the other figures in this thesis. In particular, the font has been changed, a drop shadow has been added, and
minor visual glitches have been attended to.

108

7.2. Implementing execution tracing at Sony Ericsson

both the sending and receiving processes, making it possible to identify process deadlocks.
COM+ provides a service that corresponds to this tracing facility in the form of COM+

Instrumentation. This service publishes events to clients using a loosely-coupled event service.
Clients can subscribe to a wide variety of different events, including notifications related to
security, transactions, exceptions and object pools, and notably also object instantiation and
destruction, as well as when operations are entered and exited.

The trace feature developed as part of this thesis work has been integrated into Sony
Ericsson’s main codebase, and is available to all developers. The proxy-related entry types
were implemented by Sony Ericsson after the commencement of this thesis work.

7.2.1 Generating UML sequence diagrams

A number of output formats were considered for the tool generating UML sequence diagrams,
including those used by leading CASE tools.6 In the end, the XML-based Scalable Vector
Graphics (SVG) format was selected because of its ubiquity and openness. A cursory search
at the end of 2005 revealed that no suitable pre-existing sequence diagram generators were
available, thus necessitating the creation of a custom solution.

The initial plan called for writing a Perl script converting trace files to a standardized
XML-based format for expressing program behavior at runtime. This data would then be
converted to SVG using an XSLT stylesheet. This approach was abandoned, as no such
standardized format was found other than OMG’s XML Metadata Interchange (XMI), and
this format was deemed too complex. The tool was instead fully written in Java.

The sequence diagram generator is structured much like a compiler. The front-end parses
trace files, and returns an intermediate representation from which an output document is
generated by a back-end. To parse the input data, the front-end uses Java’s built-in support
for regular expressions, with an expression similar to the one presented in the footnote on
page 107.

To infer caller–callee relationships, the front-end maintains a call stack—when operation
bodies are entered, an entry is pushed onto the call stack, and popped off when the body
is exited. When an entry that signifies that an operation is entered is encountered in the
trace file, the operation at the top of the call stack is assumed to have called it. Likewise,
when an object creation entry is encountered, the operation at the top of the call stack is
assumed to have created it. As not all objects are necessarily part of a trace file, these links
are somewhat tenuous in that they are at times indirect. For instance, an operation identified
as instantiating a certain object may not have created the object directly, it may rather have
called on the services of an object not appearing in the trace file.

There are two back-ends available, one that prints a text-only version of the trace file to
standard output and one that generates SVG files. The text-only back-end is mostly used for
debugging the generator itself. Its output is significantly more readable than a raw trace file,
though, due to its use of indentation to convey call depth.

The SVG back-end uses the open-source Apache Batik library, which allows programs
to draw on a standard graphics canvas instead of generating SVG directly—Batik converts
the graphics primitives to SVG. The SVG back-end does not attempt to have the Y axis of
diagrams reflect real time, as doing so would result in very large diagrams.

6Computer-aided software engineering (CASE) is an umbrella term for software tools that help organizations
develop software. It is most commonly used to refer to tools that help with modeling and design. CASE tools
typically help developers model a domain visually using UML notation.

109

7. Implementing interception

7.2.2 Tracing invocations

The tracing facility developed as part of this thesis work can only be enabled at build-
time—there are no provisions for enabling and disabling tracepoints at runtime. Unlike the
interception techniques described on page 106, this solution does not use wrapper objects that
masquerade as the target objects and forward invocations. Instead, the IDL compiler emits
code that realizes tracing for traced classes.

In theory, ECMX is a binary standard, and developers can thus write classes without
relying on Sony Ericsson’s IDL compiler. In practice, Sony Ericsson’s IDL dialect is used
pervasively, and developers never write ECMX classes without using the IDL compiler—indeed,
the technology is simply known as “IDL” in developer vernacular. This is in stark contrast to
COM, where an arbitrary number of IDL compilers and other such tools, created by companies
other than Microsoft, create COM-compatible classes. The binary standard is the common
denominator that binds these disparate solutions together. At Sony Ericsson, though, the
sole IDL compiler, which is under the direct control of the company, is always used to create
ECMX-compatible classes. IDL is thus a de facto standard for creating ECMX classes at Sony
Ericsson, if not a de jure standard. As such, modifying the IDL compiler to emit tracing code
is a workable solution.

Sony Ericsson’s IDL compiler creates a number of files when creating a C binding from
an IDL file. Of these, only the file housing the domain-specific implementation of a class is
expected to be stored in a version-controlled repository. The other files, containing “plumbing”
code such as proxies for inter-process communication, UUIDs and notably dispatch tables,
are generated by the build system on-demand, and are stored in a directory dedicated to
automatically generated files.

The latter property is exploited by this tracing facility to make already-written classes write
their runtime behavior to disk, with no changes required to the developer-maintained class
source code. When the IDL compiler encounters a class for which tracing has been enabled,
it does not point the generated dispatch tables of the class directly to the implementation
functions as it ordinarily does—instead, it points the dispatch tables to generated wrapper
functions. These functions call on the services that have been enabled declaratively before and
after the original function is invoked. (ECMX also uses these wrappers to enable declarative
thread-safety.) Tracing class instantiation and object destruction is straight-forward, as the
class factory and implementation of IRoot::Release() are always provided by the system
when the IDL compiler is used.

A sample trace wrapper generated by the IDL compiler is shown in Listing 7.2. The
CSystemTrace class is part of the ECMX runtime system, and is responsible for writing trace
entries to disk.7 Instances of this class are protected from concurrent access using ECMX’s
support for declarative thread-safety. Return values from the CSystemTrace operations are
purposefully thrown away, as a failure to write a trace entry to disk should not prevent the
original function from being called, and should not cause the caller to receive a failure code.

An ECMX IDL file ordinarily only contains one class. The IDL compiler generates code
that traces invocations when invoked with the command-line argument --trace. The build

7CSystemTrace is an example of a static class, which is yet another addition to ECMX. Macros of the form
[class-name]_[interface-name]_[operation-name] are generated by the IDL compiler for these classes, and
expand to calls to system-wide object instances (which are created if necessary). The first version of this work
put the required code inline in the wrapper functions themselves, instead of calling on the services of a separate
object. After the commencement of this thesis work, Sony Ericsson refactored the tracing facility, and in doing
so, created the CSystemTrace class.

110

7.2. Implementing execution tracing at Sony Ericsson

Listing 7.2 Sample trace wrapper
stat ic RVoid

CTestClassBase_ITestInter face_TestOperat ion (
ITe s t I n t e r f a c e ∗ p ITe s t I n t e r f a c e)

{
CTestClassBase_t∗ pThis = (CTestClassBase_t ∗) p ITes t In t e r f a c e−>pData ;
RVoid _resu l t ;

CSystemTrace_ISystemTrace_EnterOperation (" CTestClass " ,
" IT e s t I n t e r f a c e " ,
" TestOperation " ,
(FUint32) pThis) ;

_resu l t = CTestClass_ITestInter face_TestOperat ion (p ITe s t I n t e r f a c e) ;

CSystemTrace_ISystemTrace_LeaveOperation (" CTestClass " ,
" IT e s t I n t e r f a c e " ,
" TestOperation " ,
(FUint32) pThis) ;

return _resu l t ;
}

Listing 7.3 Sample configuration file enabling tracing
[SourceFi les_Options]
CFirstTestModuleTestClass . i d l +IDL=(−−t r a c e) # Trace a s p e c i f i c c l a s s .
CSecondTestModule ∗ . i d l +IDL=(−−t r a c e) # Trace a s p e c i f i c module .
#C∗ . i d l +IDL=(−−t r a c e) # Trace a l l c l a s s e s .

system used by Sony Ericsson allows for temporary modifications to the build configuration
using a file, DescrExtra, that is never checked into the versioned-controlled repository. Using
this file, developers can easily add the --trace argument to one or several IDL files housing
classes. (IDL files should always be named after the classes or interfaces that reside within
them.) DescrExtra also supports wildcards, making it easy to enable tracing for multiple
files. As classes are normally prefixed with the name of the module they are part of, the
wildcard feature makes it easy to enable tracing for all classes that are part of a specific
module. Listing 7.3 shows a sample DescrExtra file.

Sony Ericsson’s IDL compiler is written in C++, and its front-end uses GNU Flex for
lexical analysis and GNU Bison for generating a parser from a context-free grammar. The
intermediate representation consists of an in-memory syntax tree, which the back-end traverses
using the visitor design pattern (Gamma et al. 1995). This work has entailed making a number
of changes primarily to the visitors of the compiler.

It is debatable whether this tracing facility truly uses interception. The source code of
classes is essentially modified in such a way that objects are coerced into writing their own
behavior to disk. At runtime, there is no need to intercept calls using separate wrapper objects,
as the objects themselves realize tracing.

111

7. Implementing interception

7.2.3 Future work

Trace files tend to become quite voluminous, especially if tracing is enabled for many classes.
As a result, the resulting UML sequence diagrams become very large and consequently hard
to read. One way to make diagrams more compact is to represent redundant data more
efficiently. Taniguchi et al. (2005) propose a number of compaction rules that make UML
sequence diagrams generated from traces more concise, including the removal of repetitions.
The authors report that sample traces were considerably reduced in size when their compaction
rules were applied to them, ranging from one hundredth of the original size to seven percent
of it. The work of Taniguchi et al. could be profitably applied to the UML sequence diagram
generator developed as part of this thesis work.

UML sequence diagrams generated by this tool must be viewed using an external viewer.
It might be worthwhile to create a dedicated viewer application allowing the user to filter out
specific classes.

It is not clear that UML sequence diagrams are the best way to visualize program traces.
Renieris and Reiss (1999) present some alternatives, including a spiral view and a space-efficient
linear view that uses the horizontal axis to represent (real) time, the vertical axis to represent
call depth and color to represent the called function. A viewer application for traces could
allow the user to select between several different visualizations.

The data contained in trace file may not only be used to visualize program behavior, it
can also be used for performance analysis. The timestamps present in trace files are not used
by the UML sequence diagram generator, but could fruitfully be used by a tool reporting on
performance, in effect creating a simple profiler.

The primary benefit of having objects log their own behavior, by redirecting their dispatch
table entries to statically generated wrapper functions, is simplicity. There are two significant
disadvantages, though. First, source code must be generated statically, leading to an increase
in code size. Also, the product must be rebuilt to enable or disable the tracing facility for
certain classes, an annoyance in an environment with long build times. (This issue will be
significantly alleviated once Sony Ericsson’s efforts to introduce dynamically linked modules get
underway, though, as build times will be substantially reduced.) Second, the current tracing
facility can not support tracing calls to all objects implementing a certain interface—the trace
feature is enabled on a per-class basis only.

These issues could be solved by introducing wrapper objects instead of modifying the
source code of classes, the only downside being the added implementation complexity. This
would make the implementation of the tracing facility similar to the interception system
proposed by Hunt and Scott (1999), and would allow for the easy integration of additional
services.

Had wrappers been available, the implementation of IShell::CreateInstance() and
IRoot::QueryInterface() would have to be interception-aware, in that these operations
would have to determine whether to return direct references or references through wrapper
objects. Making IRoot::QueryInterface() interception-aware would be straight-forward, as
wrapper objects need only be returned from other wrapper objects, and these objects are free
to use any implementation of this operation that they desire. The implementation of IShell
is provided by ST-Ericsson, and while patching ST-Ericsson’s source code is possible, it is
not desirable. It would be possible to intercept calls, though, which again is similar to the
approach taken by Hunt and Scott.

To make declarative attributes, such as tracing, available at runtime, a separate data store

112

7.2. Implementing execution tracing at Sony Ericsson

would have to be created (the current data store containing class UUIDs and their mappings
is part of ECM, and is shipped as part of ST-Ericsson’s platform). To replicate the ease-of-use
of the current tracing facility, a means of setting declarative attributes at build-time (using
compile-time names) would have to be implemented.

Wrapper classes could be generated at build-time, much like proxy classes, but this would
waste space unnecessarily. As demonstrated by Brown (1999a,b), synthesizing wrapper objects
at runtime that implement arbitrary interfaces is possible without access to type information.

The current tracing facility manages to include compile-time names in trace files for the
simple reason that these names are embedded as string literals in the generated wrapper
functions. Statically generated wrapper objects would be generated on a per-interface basis,
and while they could include the compile-time names of interfaces and operations, they would
not be able to write the compile-time class name to a trace file. If wrapper objects are to be
synthesized at runtime, no such information is available, as the synthesized implementation is
completely class-agnostic. In order to write trace files in the format exemplified by Listing 7.1,
more complete runtime type information would have to be available.

An alternative would be to forego creating human-readable trace files, and instead use
runtime names and dispatch table indices. Instead of including the compile-time names
of classes and interfaces, as well as human-readable operation names, a trace entry would
instead use a class UUID, interface UUID and the index of the operation in the dispatch table.
(Indeed, this is the information reported by COM+ Instrumentation.) Such a trace file would
be significantly more compact than the current format, and could be post-processed on a
computer with access to the source IDL files to create a human-readable trace file.

Another advantage to moving to a runtime solution with dynamically synthesized wrapper
objects, instead of statically generated wrapper functions, would be that tracing could be
enabled and disabled at runtime. ST-Ericsson provides a tool named Interactive Debug, which
allows developers to interact with a running system from a PC.8 This tool could be used for
this purpose. Absent runtime type information, developers would have to use runtime names
in the form of UUIDs, though.9 Enabling or disabling tracing for yet-to-be-instantiated objects
would be easy, doing likewise for already-existing instances would be considerably harder, as
wrappers would then essentially have to be used for all objects, at all times.

Implementing a generic interception system for ECMX, in the manner described above,
would be a major undertaking. It would enable, though, not just better support for execution
tracing, but the possibility of easily introducing a wealth of additional declarative services to
Sony Ericsson’s system.

8Interactive Debug appears much like a file system to the developer, and provides a hierarchically organized
information space that the developer can interact with. It is somewhat similar to the procfs virtual file system,
which allows users to interact with the running kernel of many Unix-like systems.

9As type information is available on the PC, it would be possible to write a tool allowing developers to use
compile-time names, that would simply translate these names to runtime names before interacting with the
embedded system.

113

Bibliography

Markus Aleksy, Axel Korthaus and Martin Schader. Implementing Distributed Systems with
Java and CORBA. Springer-Verlag, 2005.

Jeff Alger. OpenDoc vs. OLE. MacTech, 10(8), 1994. Available at http://www.mactech.com/
articles/mactech/Vol.10/10.08/OpenDoc2/.

Felix Bachmann, Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred Long, John
Robert, Robert Seacord and Kurt Wallnau. Volume II: Technical Concepts of Component-
Based Software Engineering, 2nd Edition. Technical report, Carnegie Mellon Software
Engineering Institute, May 2000. Available at http://www.sei.cmu.edu/pub/documents/
00.reports/pdf/00tr008.pdf.

David Bank. The Java saga. Wired Magazine, 3(12), December 1995. Available at http:
//www.wired.com/wired/archive/3.12/java.saga.html.

Neil Bartlett. OSGi in practice, January 2009. Draft preview, no publisher announced.
Available at http://neilbartlett.name/blog/osgibook/.

Grady Booch, Hedley Apperly, William T. Councill, Martin Griss, George T. Heineman,
Ivar Jacobson, Steve Latchem, Barry McGibbon, Davyd Norris and Jeffrey Poulin. The
near-term future of Component-Based Software Engineering. In George T. Heineman and
William T. Councill, editors, Component-Based Software Engineering: Putting the Pieces
Together, pages 753–777. Addison-Wesley, 2001.

Don Box. Windows 2000 brings significant refinements to the COM(+) programming model.
Microsoft Systems Journal, 14(5), May 1999. Available at http://www.microsoft.com/
msj/0599/complusprog/complusprog.aspx.

Keith Brown. Building a lightweight COM interception framework, part I: The Universal
Delegator. Microsoft Systems Journal, 14(1):17–29, January 1999a. Available at http:
//www.microsoft.com/msj/0199/intercept/intercept.aspx.

Keith Brown. Building a lightweight COM interception framework, part II: The guts of
the UD. Microsoft Systems Journal, 14(2):49–59, February 1999b. Available at http:
//www.microsoft.com/msj/0299/intercept2/intercept2.aspx.

Bruce Bukovics. .NET 2.0 Interoperability Recipes. Apress, 2006.

Jon Byous. Java Technology: The Early Years. Sun Microsystems, 1998. Available at
http://java.sun.com/features/1998/05/birthday.html.

115

http://www.mactech.com/articles/mactech/Vol.10/10.08/OpenDoc2/
http://www.mactech.com/articles/mactech/Vol.10/10.08/OpenDoc2/
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr008.pdf
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr008.pdf
http://www.wired.com/wired/archive/3.12/java.saga.html
http://www.wired.com/wired/archive/3.12/java.saga.html
http://neilbartlett.name/blog/osgibook/
http://www.microsoft.com/msj/0599/complusprog/complusprog.aspx
http://www.microsoft.com/msj/0599/complusprog/complusprog.aspx
http://www.microsoft.com/msj/0199/intercept/intercept.aspx
http://www.microsoft.com/msj/0199/intercept/intercept.aspx
http://www.microsoft.com/msj/0299/intercept2/intercept2.aspx
http://www.microsoft.com/msj/0299/intercept2/intercept2.aspx
http://java.sun.com/features/1998/05/birthday.html

Bibliography

Charlie Calvert. Charlie Calvert’s Delphi 4 Unleashed. Sams Publishing, 1999.

Bryan M. Cantrill, Michael W. Shapiro and Adam H. Leventhal. Dynamic instrumentation of
production systems. In Proceedings of USENIX ’04, 2004. Available at http://www.sun.
com/bigadmin/content/dtrace/dtrace_usenix.pdf.

Alan F. Chalmers. What is this Thing Called Science?: An Assessment of the Nature and
Status of Science and Its Methods, chapter Theories as structures I: Kuhn’s paradigms.
University of Queensland Press, 1999.

Stephen Clamage. Stability of the C++ ABI: Evolution of a Programming Language. Sun
Microsystems, 2002. Available at http://developers.sun.com/solaris/articles/CC_
abi/CC_abi_content.html.

John Corwin, David F. Bacon, David Grove and Chet Murthy. MJ: A rational module system
for Java and its applications. In Proceedings of the OOPSLA ’03 Conference, pages 241–254.
Association for Computing Machinery SIGPLAN, 2003.

Edsger W. Dĳkstra. The humble programmer. Communications of the ACM, 15(10):859–
866, October 1972. Available at http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.
PDF.

Bruce Eckel. Thinking in Java, chapter Appendix A: Using non-Java code. Prentice Hall, first
edition, 1998. Chapter written by Andrea Provaglio. Available at http://www.mindviewinc.
com/Books/.

Guy Eddon and Henry Eddon. Understanding the DCOM wire protocol by analyzing network
data packets. Microsoft Systems Journal, 13(3), March 1998. Available at http://www.
microsoft.com/msj/0398/dcom.aspx.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons and David Fado. UML 2 Toolkit, chapter
Representing Architecture, pages 255–257. John Wiley and Sons, 2004.

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Angana Ghosh, Magnus Olsson and Patrik Persson. Ericsson Review: Open application
environments in mobile devices: Focus on JME and Ericsson Mobile Platforms. Er-
icsson Review, 82(2), 2005. Available at http://ericsson.com/ericsson/corpinfo/
publications/review/2005_02/files/200502.pdf.

Crispin Goswell. The COM Programmer’s Cookbook. Microsoft, 1995. Available at http:
//msdn.microsoft.com/en-us/library/ms809982.aspx.

George T. Heineman and William T. Councill, editors. Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley, 2001a.

George T. Heineman and William T. Councill. Definition of a software component and its
elements. In George T. Heineman and William T. Councill, editors, Component-Based
Software Engineering: Putting the Pieces Together, pages 5–21. Addison-Wesley, 2001b.

116

http://www.sun.com/bigadmin/content/dtrace/dtrace_usenix.pdf
http://www.sun.com/bigadmin/content/dtrace/dtrace_usenix.pdf
http://developers.sun.com/solaris/articles/CC_abi/CC_abi_content.html
http://developers.sun.com/solaris/articles/CC_abi/CC_abi_content.html
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF
http://www.mindviewinc.com/Books/
http://www.mindviewinc.com/Books/
http://www.microsoft.com/msj/0398/dcom.aspx
http://www.microsoft.com/msj/0398/dcom.aspx
http://ericsson.com/ericsson/corpinfo/publications/review/2005_02/files/200502.pdf
http://ericsson.com/ericsson/corpinfo/publications/review/2005_02/files/200502.pdf
http://msdn.microsoft.com/en-us/library/ms809982.aspx
http://msdn.microsoft.com/en-us/library/ms809982.aspx

Bibliography

George T. Heineman and William T. Councill. Summary. In George T. Heineman and
William T. Councill, editors, Component-Based Software Engineering: Putting the Pieces
Together, pages 741–753. Addison-Wesley, 2001c.

Michi Henning. The rise and fall of CORBA. ACM Queue, 4(5):28–34, June 2006. Available
at http://queue.acm.org/detail.cfm?id=1142044.

Bill Hludzinski. Understanding Interface Definition Language: A developer’s survival guide.
Microsoft Systems Journal, 13(8), August 1998. Available at http://www.microsoft.com/
msj/0898/idl/idl.aspx.

Galen C. Hunt and Michael L. Scott. Intercepting and instrumenting COM applications. In
Proceedings of the 5th Conference on Object-Oriented Technologies and Systems (COOTS’99),
pages 45–56, 1999.

Dong-Heon Jung, JongKuk Park, Sung-Hwan Bae, Jaemok Lee and Soo-Mook Moon. Efficient
exception handling in Java bytecode-to-C ahead-of-time compiler for embedded systems.
Computer Languages, Systems and Structures, 34:170–183, 2008.

Michael Kornby. The EMP story. Ericsson Review, 82(1), 2005. Available at http://ericsson.
com/ericsson/corpinfo/publications/review/2005_01/files/2005013.pdf.

Joseph C. Libby and Kenneth B. Kent. An embedded implementation of the Common
Language Infrastructure. Journal of Systems Architecture, 55:114–126, 2009.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification, chapter Loading,
Linking, and Initializing. Prentice Hall, second edition, 1999. Available at http://java.
sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html.

Ray Lischner. Delphi in a Nutshell: A Desktop Quick Reference. O’Reilly & Associates, 2000.

Steve Lohr. Microsoft told to stop shipments of software at issue in rival’s suit. The New York
Times, 1998. Published on the 18th of November.

Frank Lüders, Ivica Crnkovic and Per Runeson. Adopting a component-based software
architecture for an industrial control system—a case study. Component-Based Software
Development, Lecture Notes in Computer Science, 3378:232–248, 2005.

Lars Mathiassen, Andreas Munk-Madsen, Peter Axel Nielsen and Jan Stage. Objektorienterad
analys och design, page 223. Studentlitteratur, 2001.

R. Jon McGee and Richard L. Warms. Anthropological Theory, chapter Ethnoscience and
Cognitive Anthropology, pages 385–386. The McGraw-Hill Companies, third edition, 2004.

Douglas McIlroy. Mass produced software components. In Peter Naur and Brian Ran-
dell, editors, Software Engineering: Report on a conference sponsored by the NATO
Science Committee, Garmisch, Germany, 7th to 11th October 1968, pages 138–155.
North Atlantic Treaty Organization, NATO Scientific Affairs Division, 1969. Available
at http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF. The PDF ver-
sion’s pagination differs from the original; refer to pages 79–87 in this version.

117

http://queue.acm.org/detail.cfm?id=1142044
http://www.microsoft.com/msj/0898/idl/idl.aspx
http://www.microsoft.com/msj/0898/idl/idl.aspx
http://ericsson.com/ericsson/corpinfo/publications/review/2005_01/files/2005013.pdf
http://ericsson.com/ericsson/corpinfo/publications/review/2005_01/files/2005013.pdf
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

Bibliography

Merriam-Webster. Merriam-Webster’s Online Dictionary: Definition for object, 2009a. Available
at http://www.m-w.com/dictionary/object.

Merriam-Webster. Merriam-Webster’s Online Dictionary: Definition for component, 2009b.
Available at http://www.m-w.com/dictionary/component.

Microsoft. Behind the Code—Life and Times of Anders Hejlsberg. Video interview, 2005.
Available at http://channel9.msdn.com/shows/Behind+The+Code/Life-and-Times-of-
Anders-Hejlsberg/.

Microsoft. Behind the Code—Tony Williams: Co-inventor of COM. Video interview, 2006.
Available at http://channel9.msdn.com/shows/Behind+The+Code/Tony-Williams-Co-
inventor-of-COM/.

Kevin Mukhar, Chris Zelenak, James L. Weaver and Jim Crume. Beginning Java EE 5: From
Novice to Professional. Apress, 2005.

Peter Naur and Brian Randell, editors. Software Engineering: Report on a conference
sponsored by the NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968,
1969. North Atlantic Treaty Organization, NATO Scientific Affairs Division. Available at
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF.

Greg Olsen. From COM to common. ACM Queue, 4(5):20–26, June 2006. Available at
http://queue.acm.org/detail.cfm?id=1142043.

Open Software Foundation. OSF DCE Version 1.1: DCE Porting and Testing Guide, November
1995. Available at http://www.opengroup.org/dce/download/.

George Orwell. Nineteen Eighty-Four. Penguin Group, centennial edition, 2003. Original
version published in 1949.

David L. Parnas. On the criteria to be used in decomposing systems into modules. Communi-
cations of the ACM, 15(12):1053–1058, December 1972.

Ted Pattison. Basic instincts: Porting applications from MTS to COM+. MSDN Magazine,
March 2000. Available at http://msdn.microsoft.com/en-us/magazine/cc301351.aspx.

A. J. Perlis. A new policy for algorithms? Communications of the ACM, 9(4):255–256, April
1966.

Erik Persson. Shadows of Cavernous Shades: Charting the Chiaroscuro of Realistic Computing.
Ph.D. thesis, Department of Computer Science, Lund University, 2002.

Cuno Pfister and Clemens Szyperski. Why objects are not enough. In Proceedings, First
International Component Users Conference. SIGS Publishers, 1996.

Jeff Prosise. Windows 2000: Asynchronous method calls eliminate the wait for COM clients
and servers. MSDN Magazine, April 2000a. Available at http://msdn.microsoft.com/en-
us/magazine/cc301334.aspx.

Jeff Prosise. Implementing handler marshaling under Windows 2000: DeviceClient sample
app. MSDN Magazine, August 2000b. Available at http://msdn.microsoft.com/en-
us/magazine/cc302323.aspx.

118

http://www.m-w.com/dictionary/object
http://www.m-w.com/dictionary/component
http://channel9.msdn.com/shows/Behind+The+Code/Life-and-Times-of-Anders-Hejlsberg/
http://channel9.msdn.com/shows/Behind+The+Code/Life-and-Times-of-Anders-Hejlsberg/
http://channel9.msdn.com/shows/Behind+The+Code/Tony-Williams-Co-inventor-of-COM/
http://channel9.msdn.com/shows/Behind+The+Code/Tony-Williams-Co-inventor-of-COM/
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF
http://queue.acm.org/detail.cfm?id=1142043
http://www.opengroup.org/dce/download/
http://msdn.microsoft.com/en-us/magazine/cc301351.aspx
http://msdn.microsoft.com/en-us/magazine/cc301334.aspx
http://msdn.microsoft.com/en-us/magazine/cc301334.aspx
http://msdn.microsoft.com/en-us/magazine/cc302323.aspx
http://msdn.microsoft.com/en-us/magazine/cc302323.aspx

Bibliography

Jeff Prosise. Understanding COM apartments, part I. CodeGuru, 2001. Available at http:
//www.codeguru.com/cpp/com-tech/activex/apts/article.php/c5529.

Ingo Rammer and Mario Szpuszta. Advanced .NET Remoting. Apress, 2005.

Manos Renieris and Steven P. Reiss. Almost: Exploring program traces. In Proceedings of the
1999 Workshop on New Paradigms in Information Visualization and Manipulation, pages
70–77. ACM Press, 1999.

Dennis M. Ritchie. The evolution of the Unix time-sharing system. Lecture Notes in Com-
puter Science, 79:25–35, 1980. Available at http://www.cs.bell-labs.com/who/dmr/hist.
html.

Miro Samek. Portable inheritance and polymorphism in C. Embedded Systems Programming,
10(12), December 1997. Available at http://www.embedded.com/97/fe29712.htm.

Douglas C. Schmidt and Steve Vinoski. Object interconnections: Real-time CORBA, part
1: Motivation and overview. C/C++ Users Journal, December 2001. Available at http:
//www.ddj.com/cpp/184403809.

Douglas C. Schmidt and Steve Vinoski. CORBA metaprogramming mechanisms, part 1.
C/C++ Users Journal, March 2003. Available at http://www.ddj.com/cpp/184403860.

Douglas C. Schmidt and Steve Vinoski. The CORBA Component Model: Part 1, evolving
towards component middleware. C/C++ Users Journal, February 2004. Available at
http://www.ddj.com/cpp/184403884.

Douglas C. Schmidt, Nanbor Wang and Steve Vinoski. Object interconnections: Collocation
optimizations for CORBA. C++ Report, September 1999.

Stephen B. Seidman. IFIP International Federation for Information Processing, volume
280, chapter The Role of Professional Societies in the Emergence of Software Engineering
Professionalism in the United States and Canada, pages 59–67. Springer Boston, 2008.

Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. In
Proceedings of the OOPSLA ’86 Conference, pages 38–45. Association for Computing
Machinery SIGPLAN, 1986.

Ian Sommerville. Software Engineering, chapter Component-Based Software Engineering.
Pearson Education, eighth edition, 2007.

Mark Stoodley, Kenneth Ma and Marius Lut. Real-time Java, part 2: Comparing compi-
lation techniques. IBM developerWorks, April 2007. Available at http://www.ibm.com/
developerworks/java/library/j-rtj2/.

Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

Bjarne Stroustrup. Multiple inheritance for C++. The C/C++ Users Journal, May 1999.

Kevin J. Sullivan. Designing models of modularity and integration. In George T. Heineman
and William T. Councill, editors, Component-Based Software Engineering: Putting the
Pieces Together, pages 341–367. Addison-Wesley, 2001.

119

http://www.codeguru.com/cpp/com-tech/activex/apts/article.php/c5529
http://www.codeguru.com/cpp/com-tech/activex/apts/article.php/c5529
http://www.cs.bell-labs.com/who/dmr/hist.html
http://www.cs.bell-labs.com/who/dmr/hist.html
http://www.embedded.com/97/fe29712.htm
http://www.ddj.com/cpp/184403809
http://www.ddj.com/cpp/184403809
http://www.ddj.com/cpp/184403860
http://www.ddj.com/cpp/184403884
http://www.ibm.com/developerworks/java/library/j-rtj2/
http://www.ibm.com/developerworks/java/library/j-rtj2/

Bibliography

Sun Microsystems. OpenOffice.org 2.3 Developer’s Guide, 2007. Available at http://api.
openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf.

Sun Microsystems. Being Unique with Sony Ericsson. Presentation from the JavaOne
conference, 2009. Available at http://java.sun.com/javaone/2009/general_sessions.
jsp.

Symbian Foundation. Introduction to the ECom Plug-in Architecture, 2008. Available at
http://developer.symbian.org/main/documentation/carbide/ (search for “ecom”).

Clemens Szyperski, Dominik Gruntz and Stephan Murer. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, second edition, 2002.

Darryl K. Taft. Distributed OSGi effort progresses. Ziff Davis eWEEK, 2008. Available
at http://www.eweek.com/c/a/Application-Development/Distributed-OSGi-Effort-
Progresses/.

Koji Taniguchi, Takashi Ishio, Toshihiro Kamiya, Shinji Kusumoto and Katsuro Inoue. Ex-
tracting sequence diagram from execution trace of Java program. In Proceedings of the 2005
Eighth International Workshop on Principles of Software Evolution (IWPSE’05). Institute
of Electrical and Electronics Engineers, 2005.

Dave Templin. Simplify app deployment with ClickOnce and registration-free COM.
MSDN Magazine, April 2005. Available at http://msdn.microsoft.com/en-us/magazine/
cc188708.aspx.

Will Tracz. COTS myths and other lessons learned in component-based software development.
In George T. Heineman and William T. Councill, editors, Component-Based Software
Engineering: Putting the Pieces Together, pages 99–113. Addison-Wesley, 2001.

Andrew Troelsen. Pro C# with .NET 3.0. Apress, 2007.

Doug Turner and Ian Oeschger. Creating XPCOM Components. Brownhen Publishing, 2003.
Available at https://developer.mozilla.org/en/Creating_XPCOM_Components.

Jon Udell. ComponentWare. BYTE Magazine, pages 46–56, May 1994.

Bill Venners and Bruce Eckel. Delegates, components, and simplexity: A conversation with
Anders Hejlsberg, part III, 2003. Available at http://www.artima.com/intv/simplexity3.
html.

Mark Vigder. The evolution, maintenance, and management of component-based systems.
In George T. Heineman and William T. Councill, editors, Component-Based Software
Engineering: Putting the Pieces Together, pages 527–553. Addison-Wesley, 2001.

Steve Vinoski. CORBA: Integrating diverse applications within distributed heterogeneous
environments. IEEE Communications Magazine, 35(2), February 1997. Available at
http://steve.vinoski.net/ieee.pdf.

Padmal Vitharana. Risks and challenges of component-based software development. Commu-
nications of the ACM, 46(8):67–72, August 2003.

120

http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf
http://api.openoffice.org/docs/DevelopersGuide/DevelopersGuide.pdf
http://java.sun.com/javaone/2009/general_sessions.jsp
http://java.sun.com/javaone/2009/general_sessions.jsp
http://developer.symbian.org/main/documentation/carbide/
http://www.eweek.com/c/a/Application-Development/Distributed-OSGi-Effort-Progresses/
http://www.eweek.com/c/a/Application-Development/Distributed-OSGi-Effort-Progresses/
http://msdn.microsoft.com/en-us/magazine/cc188708.aspx
http://msdn.microsoft.com/en-us/magazine/cc188708.aspx
https://developer.mozilla.org/en/Creating_XPCOM_Components
http://www.artima.com/intv/simplexity3.html
http://www.artima.com/intv/simplexity3.html
http://steve.vinoski.net/ieee.pdf

Bibliography

Rainer Weinreich and Johannes Sametinger. Component models and component services: Con-
cepts and principles. In George T. Heineman and William T. Councill, editors, Component-
Based Software Engineering: Putting the Pieces Together, pages 33–49. Addison-Wesley,
2001.

James E. White. A high-level framework for network-based resource sharing. In AFIPS ’76:
Proceedings of the June 7-10, 1976, national computer conference and exposition, pages
561–570, 1976. Also available as RFC 707, at http://tools.ietf.org/html/rfc707.

The veracity of all Internet addresses has been verified on January 30, 2010.

121

http://tools.ietf.org/html/rfc707

	Figures
	Listings
	Preface
	1 Confronting the software crisis
	1.1 Putting the software component idea to work
	1.2 Contemporary components
	1.3 Defining a software component
	1.4 Fleshing out the definitions
	1.5 Beyond object-orientation?
	1.6 Muddying the waters
	1.7 Enterprise services

	2 Realizing software components
	2.1 First-generation component models
	2.2 Second-generation component models
	2.2.1 Realizing interfaces
	2.2.2 Calling in-process components
	2.2.3 Calling out-of-process components
	2.2.4 Late binding versus very late binding
	2.2.5 Managing memory

	2.3 Third-generation component models

	3 Demystifying dynamic dispatch
	3.1 A binary tree node in C
	3.1.1 Name mangling
	3.1.2 Error handling
	3.1.3 Instance data

	3.2 A syntax tree representing an arithmetic expression in C
	3.2.1 Introducing late binding

	4 Refining the object model
	4.1 Instituting a root interface
	4.2 Enabling very late binding
	4.3 Object-oriented omissions
	4.3.1 Class interface
	4.3.2 Implementation inheritance
	4.3.3 Access specifiers
	4.3.4 Multiple interface inheritance

	4.4 Moving toward component technology
	4.4.1 Factories
	4.4.2 Code generation
	4.4.3 Runtime type information
	4.4.4 Software components

	5 Ways of the industry
	5.1 Visual Basic
	5.2 COM
	5.2.1 Technical foundation

	5.3 Delphi
	5.4 CORBA
	5.4.1 Implications of not using a binary standard

	5.5 Java
	5.5.1 Repartitioning the platform
	5.5.2 Modularity woes
	5.5.3 True Java components

	5.6 .NET
	5.6.1 Technical foundation
	5.6.2 Interoperating with native code
	5.6.3 True .NET components

	6 The (Sony) Ericsson way
	6.1 The Ericsson Component Model
	6.2 Enter Sony Ericsson
	6.2.1 Inter-process communication
	6.2.2 Java binding

	7 Implementing interception
	7.1 Interception practices
	7.2 Implementing execution tracing at Sony Ericsson
	7.2.1 Generating UML sequence diagrams
	7.2.2 Tracing invocations
	7.2.3 Future work

	Bibliography

